|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.24.20.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[0, 0, 1, 0][Hypergeometric2F1Regularized][a, b, c, z] ==
-Sum[(Pochhammer[a, k] Pochhammer[b, k] PolyGamma[c + k] z^k)/
(Gamma[c + k] k!), {k, 0, Infinity}] /; Abs[z] < 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List["0", ",", "0", ",", "1", ",", "0"]], "]"]], "[", "Hypergeometric2F1Regularized", "]"]], "[", RowBox[List["a", ",", "b", ",", "c", ",", "z"]], "]"]], "\[Equal]", RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["a", ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List["b", ",", "k"]], "]"]], RowBox[List["PolyGamma", "[", RowBox[List["c", "+", "k"]], "]"]], SuperscriptBox["z", "k"]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["c", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mn> 2 </mn> </msub> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> c </mi> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", Hypergeometric2F1, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "a", ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "b", ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <msub> <mn> 2 </mn> </msub> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> <mrow> <mo> ( </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> c </mi> <annotation encoding='Mathematica'> TagBox[TagBox[TagBox["c", Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", Hypergeometric2F1, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "a", ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "b", ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> k </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["Hypergeometric2F1Regularized", TagBox[RowBox[List["(", RowBox[List["0", ",", "0", ",", "1", ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List["a_", ",", "b_", ",", "c_", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List["a", ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List["b", ",", "k"]], "]"]], " ", RowBox[List["PolyGamma", "[", RowBox[List["c", "+", "k"]], "]"]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["c", "+", "k"]], "]"]], " ", RowBox[List["k", "!"]]]]]]]]], "/;", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{},{b},z] | HypergeometricPFQRegularized[{a1},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|