|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.24.20.0047.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[Hypergeometric2F1Regularized[a + 1, b, a, z], a] ==
(1/((1 - z)^b Gamma[a])) (-PolyGamma[a] + (b z PolyGamma[1 + a])/
((-1 + z) a))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "a"], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["a", "+", "1"]], ",", "b", ",", "a", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "b"]]], RowBox[List["Gamma", "[", "a", "]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", FractionBox[RowBox[List["b", " ", "z", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", "a"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ; </mo> <mi> a </mi> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox["b", Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["a", Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox["z", Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <mi> a </mi> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mfrac> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> a </ci> </bvar> <apply> <ci> Hypergeometric2F1Regularized </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> b </ci> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> z </ci> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["a_"]]], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[RowBox[List["a_", "+", "1"]], ",", "b_", ",", "a_", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["PolyGamma", "[", "a", "]"]]]], "+", FractionBox[RowBox[List["b", " ", "z", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "a"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], " ", "a"]]]]], ")"]]]], RowBox[List["Gamma", "[", "a", "]"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{},{b},z] | HypergeometricPFQRegularized[{a1},{b1},z] | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] | |
|
|
|