| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.24.26.0249.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Hypergeometric2F1Regularized[a, 1/2 + a, c, (z - Sqrt[1 + z^2])/(2 z)] 
   Hypergeometric2F1[a, 1/2 + a, 3/2 + 2 a - c, (z - Sqrt[1 + z^2])/(2 z)] == 
  ((2^(-(3/2) + 4 a) Gamma[3/2 + 2 a - c])/(Pi Gamma[2 a])) 
   MeijerG[{{1}, {c, 1/2 + 2 a, 3/2 + 2 a - c}}, 
    {{a, 1/4 + a, 1/2 + a, 3/4 + a}, {}}, z, 1/2] /; Re[z] > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a", ",", RowBox[List[FractionBox["1", "2"], "+", "a"]], ",", "c", ",", FractionBox[RowBox[List["z", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", "z"]]]]], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List["a", ",", RowBox[List[FractionBox["1", "2"], "+", "a"]], ",", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "a"]], "-", "c"]], ",", FractionBox[RowBox[List["z", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z", "2"]]]]]], RowBox[List["2", "z"]]]]], "]"]]]], " ", "\[Equal]", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["4", " ", "a"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "a"]], "-", "c"]], "]"]]]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["2", " ", "a"]], "]"]]]]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["c", ",", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "a"]]]], ",", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "a"]], "-", "c"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List[FractionBox["1", "4"], "+", "a"]], ",", RowBox[List[FractionBox["1", "2"], "+", "a"]], ",", RowBox[List[FractionBox["3", "4"], "+", "a"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> , </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mi> c </mi>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "2"]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox["c", Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]]]], RowBox[List["2", " ", "z"]]], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> , </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> z </mi>  <mo> - </mo>  <msqrt>  <mrow>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "2"]]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "c", "+", FractionBox["3", "2"]]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List["z", "-", SqrtBox[RowBox[List[SuperscriptBox["z", "2"], "+", "1"]]]]], RowBox[List["2", " ", "z"]]], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <msubsup>  <mi> G </mi>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 4 </mn>  </mrow>  <mrow>  <mn> 4 </mn>  <mo> , </mo>  <mn> 1 </mn>  </mrow>  </msubsup>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> z </mi>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ❘ </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mi> c </mi>  <mo> , </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> - </mo>  <mi> c </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> a </mi>  <mo> , </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mfrac>  <mn> 3 </mn>  <mn> 4 </mn>  </mfrac>  </mrow>  </mrow>  </mtd>  </mtr>  </mtable>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["4", ",", "4"]], RowBox[List["4", ",", "1"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]], MeijerG], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox["1", MeijerG, Rule[Editable, True]], ",", TagBox["c", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "c", "+", FractionBox["3", "2"]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["a", MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "4"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "2"]]], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["3", "4"]]], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation>  </semantics>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> Re </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mi> z </mi>  <mo> ) </mo>  </mrow>  <mo> > </mo>  <mn> 0 </mn>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <times />  <apply>  <ci> Hypergeometric2F1Regularized </ci>  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <ci> c </ci>  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <times />  <apply>  <plus />  <ci> z </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <plus />  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> z </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <pi />  <apply>  <ci> Gamma </ci>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> MeijerG </ci>  <list>  <list>  <cn type='integer'> 1 </cn>  </list>  <list>  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> c </ci>  </apply>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  </list>  </list>  <list>  <list>  <ci> a </ci>  <apply>  <plus />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <plus />  <ci> a </ci>  <cn type='rational'> 3 <sep /> 4 </cn>  </apply>  </list>  <list />  </list>  <ci> z </ci>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <gt />  <apply>  <real />  <ci> z </ci>  </apply>  <cn type='integer'> 0 </cn>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List["a_", ",", RowBox[List[FractionBox["1", "2"], "+", "a_"]], ",", "c_", ",", FractionBox[RowBox[List["z_", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]]]], RowBox[List["2", " ", "z_"]]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["a_", ",", RowBox[List[FractionBox["1", "2"], "+", "a_"]], ",", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "a_"]], "-", "c_"]], ",", FractionBox[RowBox[List["z_", "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox["z_", "2"]]]]]], RowBox[List["2", " ", "z_"]]]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", FractionBox["3", "2"]]], "+", RowBox[List["4", " ", "a"]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "a"]], "-", "c"]], "]"]]]], ")"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["c", ",", RowBox[List[FractionBox["1", "2"], "+", RowBox[List["2", " ", "a"]]]], ",", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "a"]], "-", "c"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["a", ",", RowBox[List[FractionBox["1", "4"], "+", "a"]], ",", RowBox[List[FractionBox["1", "2"], "+", "a"]], ",", RowBox[List[FractionBox["3", "4"], "+", "a"]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", "z", ",", FractionBox["1", "2"]]], "]"]]]], RowBox[List["\[Pi]", " ", RowBox[List["Gamma", "[", RowBox[List["2", " ", "a"]], "]"]]]]], "/;", RowBox[List[RowBox[List["Re", "[", "z", "]"]], ">", "0"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQRegularized[{},{b},z] |  | HypergeometricPFQRegularized[{a1},{b1},z] |  | HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] |  |  | 
 | 
 
 | 
 |