Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] > Specific values > Specialized values > For fixed z and integer parameters





http://functions.wolfram.com/07.26.03.0016.01









  


  










Input Form





HypergeometricPFQ[{-n, -n - 1/2}, {3/2, -2 n - 3/2, -2 n - 1}, z] == ((2^(3/2 + 2 n) (2 + 2 n)!)/(Sqrt[Pi] (4 + 4 n)!)) z^(3/4 + n) (E^Sqrt[z] Pi BesselI[5/2 + 2 n, Sqrt[z]] + 2 BesselK[5/2 + 2 n, Sqrt[z]] Sinh[Sqrt[z]]) /; Element[n, Integers] && n > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List[RowBox[List["-", "n"]], "-", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "n"]], "-", FractionBox["3", "2"]]], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], "n"]], "-", "1"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]], " "]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "n"]]]], ")"]], "!"]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["3", "4"], "+", "n"]]], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", SqrtBox["z"]], " ", "\[Pi]", " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", RowBox[List["2", " ", "n"]]]], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["BesselK", "[", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", RowBox[List["2", " ", "n"]]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["Sinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;-&quot;, &quot;n&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, &quot;n&quot;]], &quot;-&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[RowBox[List[&quot;-&quot;, &quot;2&quot;]], &quot; &quot;, &quot;n&quot;]], &quot;-&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mi> n </mi> <mo> + </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <msqrt> <mi> z </mi> </msqrt> </msup> <mo> &#8290; </mo> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <msub> <mi> I </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <msub> <mi> K </mi> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> + </mo> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> </msub> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </list> <list> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <factorial /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> n </ci> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> n </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <pi /> <apply> <ci> BesselI </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> BesselK </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <sinh /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n_"]], ",", RowBox[List[RowBox[List["-", "n_"]], "-", FractionBox["1", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n_"]], "-", FractionBox["3", "2"]]], ",", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "n_"]], "-", "1"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", RowBox[List[FractionBox["3", "2"], "+", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List[RowBox[List["(", RowBox[List["2", "+", RowBox[List["2", " ", "n"]]]], ")"]], "!"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List[FractionBox["3", "4"], "+", "n"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", SqrtBox["z"]], " ", "\[Pi]", " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", RowBox[List["2", " ", "n"]]]], ",", SqrtBox["z"]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["BesselK", "[", RowBox[List[RowBox[List[FractionBox["5", "2"], "+", RowBox[List["2", " ", "n"]]]], ",", SqrtBox["z"]]], "]"]], " ", RowBox[List["Sinh", "[", SqrtBox["z"], "]"]]]]]], ")"]]]], RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List[RowBox[List["(", RowBox[List["4", "+", RowBox[List["4", " ", "n"]]]], ")"]], "!"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29