|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.26.04.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Singularities[HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2]},
{Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z], z] ==
{{ComplexInfinity, -\[Alpha]}} /;
(Element[-Subscript[a, 1], Integers] && -Subscript[a, 1] > 0 &&
\[Alpha] == Subscript[a, 1]) || (Element[-Subscript[a, 2], Integers] &&
-Subscript[a, 2] > 0 && \[Alpha] == Subscript[a, 2]) ||
(Element[-Subscript[a, 1], Integers] && -Subscript[a, 1] > 0 &&
Element[-Subscript[a, 1], Integers] && -Subscript[a, 2] > 0 &&
\[Alpha] == Min[-Subscript[a, 1], -Subscript[a, 2]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", RowBox[List["-", "\[Alpha]"]]]], "}"]], "}"]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], ">", "0"]], "\[And]", RowBox[List["\[Alpha]", "\[Equal]", SubscriptBox["a", "1"]]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], ">", "0"]], "\[And]", RowBox[List["\[Alpha]", "\[Equal]", SubscriptBox["a", "2"]]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], ">", "0"]], "\[And]", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "\[Element]", "Integers"]], "\[And]", RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], ">", "0"]], "\[And]", RowBox[List["\[Alpha]", "\[Equal]", RowBox[List["Min", "[", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], ",", RowBox[List["-", SubscriptBox["a", "2"]]]]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> 𝒮𝒾𝓃ℊ </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mo> { </mo> <mrow> <mover> <mi> ∞ </mi> <mo> ~ </mo> </mover> <mo> , </mo> <mrow> <mo> - </mo> <mi> α </mi> </mrow> </mrow> <mo> } </mo> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> α </mi> <mo> ⩵ </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> α </mi> <mo> ⩵ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ∨ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> α </mi> <mo> ⩵ </mo> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> 𝒮𝒾𝓃ℊ </ms> <ms> z </ms> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms>  </ms> </apply> <apply> <ci> FormBox </ci> <ms> 2 </ms> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <apply> <ci> FormBox </ci> <ms> 3 </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 2 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> 2 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> 3 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ] </ms> </list> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> OverscriptBox </ci> <ms> ∞ </ms> <ms> ~ </ms> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> α </ms> </list> </apply> </list> </apply> <ms> } </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> ∈ </ms> <apply> <ci> SuperscriptBox </ci> <ms> ℕ </ms> <ms> + </ms> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> α </ms> <ms> ⩵ </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ∨ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ∈ </ms> <apply> <ci> SuperscriptBox </ci> <ms> ℕ </ms> <ms> + </ms> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> α </ms> <ms> ⩵ </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 2 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> ∨ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> ∈ </ms> <apply> <ci> SuperscriptBox </ci> <ms> ℕ </ms> <ms> + </ms> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 2 </ms> </apply> </list> </apply> <ms> ∈ </ms> <apply> <ci> SuperscriptBox </ci> <ms> ℕ </ms> <ms> + </ms> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> α </ms> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <ms> min </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 2 </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", RowBox[List["-", "\[Alpha]"]]]], "}"]], "}"]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], ">", "0"]], "&&", RowBox[List["\[Alpha]", "\[Equal]", SubscriptBox["a", "1"]]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], ">", "0"]], "&&", RowBox[List["\[Alpha]", "\[Equal]", SubscriptBox["a", "2"]]]]], ")"]], "||", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], ">", "0"]], "&&", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "\[Element]", "Integers"]], "&&", RowBox[List[RowBox[List["-", SubscriptBox["a", "2"]]], ">", "0"]], "&&", RowBox[List["\[Alpha]", "\[Equal]", RowBox[List["Min", "[", RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], ",", RowBox[List["-", SubscriptBox["a", "2"]]]]], "]"]]]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|