|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.26.06.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2]},
{Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] \[Proportional]
((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]] Gamma[Subscript[b, 3]])/
(2 Sqrt[Pi] Gamma[Subscript[a, 1]] Gamma[Subscript[a, 2]])) (-z)^\[Chi]
(E^(I (\[Chi] Pi + 2 Sqrt[-z])) Sum[((-I)^k Subscript[c, k])/
(2^k (-z)^(k/2)), {k, 0, Infinity}] +
Sum[(I^k Subscript[c, k])/(2^k (-z)^(k/2)), {k, 0, Infinity}]/
E^(I (\[Chi] Pi + 2 Sqrt[-z]))) +
(((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]] Gamma[Subscript[b, 3]]
Gamma[Subscript[a, 2] - Subscript[a, 1]])/(Gamma[Subscript[a, 2]]
Gamma[Subscript[b, 1] - Subscript[a, 1]]
Gamma[Subscript[b, 2] - Subscript[a, 1]]
Gamma[Subscript[b, 3] - Subscript[a, 1]]))
HypergeometricPFQ[{Subscript[a, 1], 1 + Subscript[a, 1] -
Subscript[b, 1], 1 + Subscript[a, 1] - Subscript[b, 2],
1 + Subscript[a, 1] - Subscript[b, 3]},
{1 + Subscript[a, 1] - Subscript[a, 2]}, 1/z])/(-z)^Subscript[a, 1] +
(((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]] Gamma[Subscript[b, 3]]
Gamma[Subscript[a, 1] - Subscript[a, 2]])/(Gamma[Subscript[a, 1]]
Gamma[Subscript[b, 1] - Subscript[a, 2]]
Gamma[Subscript[b, 2] - Subscript[a, 2]]
Gamma[Subscript[b, 3] - Subscript[a, 2]]))
HypergeometricPFQ[{Subscript[a, 2], 1 + Subscript[a, 2] -
Subscript[b, 1], 1 + Subscript[a, 2] - Subscript[b, 2],
1 + Subscript[a, 2] - Subscript[b, 3]},
{1 + Subscript[a, 2] - Subscript[a, 1]}, 1/z])/(-z)^Subscript[a, 2] /;
(Abs[z] -> Infinity) && \[Chi] == (1/2) (1/2 + Subscript[a, 1] +
Subscript[a, 2] - Subscript[b, 1] - Subscript[b, 2] -
Subscript[b, 3]) && Subscript[c, 0] == 1 &&
Subscript[c, 1] == 2 (\[GothicCapitalB] - \[GothicCapitalA] +
(1/4) (Subscript[A, 2] - Subscript[B, 3]) (3 Subscript[A, 2] +
Subscript[B, 3] - 2) - 3/16) && Subscript[c, 2] ==
Subscript[c, 1]^2/2 + (1/16) (32 \[GothicCapitalR] +
4 (Subscript[A, 2] - Subscript[B, 3]) (8 \[GothicCapitalA] +
11 Subscript[A, 2] - 8 Subscript[A, 2]^2 + Subscript[B, 3] - 2) -
16 (2 Subscript[A, 2] - 3) (\[GothicCapitalB] - \[GothicCapitalA]) -
3) && Subscript[c, k] == (1/(2 k))
((2 (3 + Subscript[A, 2] - 3 Subscript[B, 3] - 10 \[Chi]) (k - 1) +
5 (k - 1)^2 + 2 Subscript[c, 1]) Subscript[c, k - 1] -
(2 Subscript[B, 3] - 4 \[GothicCapitalB] - 8 \[GothicCapitalR] -
4 (Subscript[B, 3] + 4 \[GothicCapitalB] - 1) \[Chi] -
24 Subscript[B, 3] \[Chi]^2 - 32 \[Chi]^3 +
2 (Subscript[B, 3] + 4 \[GothicCapitalB] + 12 Subscript[B, 3] \[Chi] +
24 \[Chi]^2 - 1) (k - 1) - 6 (Subscript[B, 3] + 4 \[Chi])
(k - 1)^2 + 4 (k - 1)^3 - 1) Subscript[c, k - 2] +
(k - 2 \[Chi] - 3) (k - 2 \[Chi] - 2 Subscript[b, 1] - 1)
(k - 2 \[Chi] - 2 Subscript[b, 2] - 1) (k - 2 \[Chi] -
2 Subscript[b, 3] - 1) Subscript[c, k - 3]) &&
Subscript[A, 2] == Subscript[a, 1] + Subscript[a, 2] &&
Subscript[B, 3] == Subscript[b, 1] + Subscript[b, 2] + Subscript[b, 3] &&
\[GothicCapitalA] == Subscript[a, 1] Subscript[a, 2] &&
\[GothicCapitalB] == Subscript[b, 1] Subscript[b, 2] +
Subscript[b, 1] Subscript[b, 3] + Subscript[b, 2] Subscript[b, 3] &&
\[GothicCapitalR] == Subscript[b, 1] Subscript[b, 2] Subscript[b, 3] &&
!Element[Subscript[a, 1] - Subscript[a, 2], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "3"], "]"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Chi]"], RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Chi]", " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], SubscriptBox["c", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", FractionBox["k", "2"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Chi]", " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ImaginaryI]", "k"], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], SubscriptBox["c", "k"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", FractionBox["k", "2"]]]]]]]]]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "3"], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "2"], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "1"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["a", "1"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "1"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"]]], "}"]], ",", FractionBox["1", "z"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]], RowBox[List["Gamma", "[", SubscriptBox["b", "3"], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["a", "2"]]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "3"], "-", SubscriptBox["a", "2"]]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["a", "2"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "2"], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["a", "1"]]], "}"]], ",", FractionBox["1", "z"]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["c", "0"], "\[Equal]", "1"]], "\[And]", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", RowBox[List["2", RowBox[List["(", RowBox[List["\[GothicCapitalB]", "-", "\[GothicCapitalA]", "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "-", SubscriptBox["B", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", SubscriptBox["A", "2"]]], "+", SubscriptBox["B", "3"], "-", "2"]], ")"]]]], "-", FractionBox["3", "16"]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["c", "2"], "\[Equal]", " ", RowBox[List[FractionBox[SubsuperscriptBox["c", "1", "2"], "2"], "+", RowBox[List[FractionBox["1", "16"], " ", RowBox[List["(", RowBox[List[RowBox[List["32", " ", "\[GothicCapitalR]"]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "-", SubscriptBox["B", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "\[GothicCapitalA]"]], "+", RowBox[List["11", " ", SubscriptBox["A", "2"]]], "-", RowBox[List["8", " ", SubsuperscriptBox["A", "2", "2"]]], "+", SubscriptBox["B", "3"], "-", "2"]], ")"]]]], "-", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["A", "2"]]], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["\[GothicCapitalB]", "-", "\[GothicCapitalA]"]], ")"]]]], "-", "3"]], ")"]]]]]]]], "\[And]", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", "k"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["A", "2"], "-", RowBox[List["3", " ", SubscriptBox["B", "3"]]], "-", RowBox[List["10", " ", "\[Chi]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "2"]]], "+", RowBox[List["2", " ", SubscriptBox["c", "1"]]]]], ")"]], SubscriptBox["c", RowBox[List["k", "-", "1"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["B", "3"]]], "-", RowBox[List["4", " ", "\[GothicCapitalB]"]], "-", RowBox[List["8", " ", "\[GothicCapitalR]"]], "-", RowBox[List["4", " ", RowBox[List["(", " ", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List["4", " ", "\[GothicCapitalB]"]], "-", "1"]], ")"]], " ", "\[Chi]"]], "-", RowBox[List["24", " ", SubscriptBox["B", "3"], " ", SuperscriptBox["\[Chi]", "2"]]], "-", RowBox[List["32", " ", SuperscriptBox["\[Chi]", "3"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List["4", " ", "\[GothicCapitalB]"]], "+", RowBox[List["12", " ", SubscriptBox["B", "3"], " ", "\[Chi]"]], "+", RowBox[List["24", " ", SuperscriptBox["\[Chi]", "2"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List["4", " ", "\[Chi]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "3"]]], "-", "1"]], ")"]], SubscriptBox["c", RowBox[List["k", "-", "2"]]]]], " ", "+", RowBox[List[RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", RowBox[List["2", " ", SubscriptBox["b", "1"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", RowBox[List["2", " ", SubscriptBox["b", "2"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", RowBox[List["2", " ", SubscriptBox["b", "3"]]], "-", "1"]], ")"]], SubscriptBox["c", RowBox[List["k", "-", "3"]]]]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["a", "2"]]]]], "\[And]", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]]]], "\[And]", RowBox[List["\[GothicCapitalA]", "\[Equal]", RowBox[List[SubscriptBox["a", "1"], " ", SubscriptBox["a", "2"]]]]], "\[And]", RowBox[List["\[GothicCapitalB]", "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["b", "1"], " ", SubscriptBox["b", "2"]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", SubscriptBox["b", "3"]]], "+", RowBox[List[SubscriptBox["b", "2"], " ", SubscriptBox["b", "3"]]]]]]], "\[And]", RowBox[List["\[GothicCapitalR]", "\[Equal]", RowBox[List[SubscriptBox["b", "1"], SubscriptBox["b", "2"], SubscriptBox["b", "3"]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"]]], ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> χ </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <msup> <mi> ⅈ </mi> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> k </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[SubscriptBox["a", "1"], "-", SubscriptBox["a", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", "z"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 4 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["4", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["b", "3"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List[RowBox[List["-", SubscriptBox["a", "1"]]], "+", SubscriptBox["a", "2"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox["1", "z"], HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <mi> χ </mi> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mn> 0 </mn> </msub> <mo> ⩵ </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> 𝔅 </mi> <mo> - </mo> <mi> 𝔄 </mi> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> A </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 16 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <msubsup> <mi> c </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 16 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 16 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> A </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> 𝔅 </mi> <mo> - </mo> <mi> 𝔄 </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mi> ℜ </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ⁢ </mo> <msubsup> <mi> A </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <msub> <mi> A </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> 𝔄 </mi> </mrow> <mo> + </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> c </mi> <mi> k </mi> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 3 </mn> </mrow> </msub> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> + </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msup> <mi> χ </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> 𝔅 </mi> </mrow> <mo> + </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mi> χ </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> χ </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> 𝔅 </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> ℜ </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> 𝔅 </mi> </mrow> <mo> + </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 2 </mn> </mrow> </msub> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 10 </mn> </mrow> <mo> ⁢ </mo> <mi> χ </mi> </mrow> <mo> + </mo> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> B </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> c </mi> <mn> 1 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> c </mi> <mrow> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> A </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> ⩵ </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> 𝔄 </mi> <mo> ⩵ </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> 𝔅 </mi> <mo> ⩵ </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> ℜ </mi> <mo> ⩵ </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> χ </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <pi /> <ci> χ </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <pi /> <ci> χ </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <imaginaryi /> <ci> k </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> k </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <eq /> <ci> χ </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> 𝔅 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> 𝔄 </ci> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 16 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> 𝔅 </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> 𝔄 </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 32 </cn> <ci> ℜ </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> 𝔄 </ci> </apply> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> χ </ci> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> χ </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> χ </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> χ </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> χ </ci> </apply> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <ci> χ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <ci> χ </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> 𝔅 </ci> </apply> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> χ </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> χ </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> 𝔅 </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> ℜ </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> 𝔅 </ci> </apply> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <ci> χ </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -10 </cn> <ci> χ </ci> </apply> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> c </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> c </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> A </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> 𝔄 </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <eq /> <ci> 𝔅 </ci> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <eq /> <ci> ℜ </ci> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <notin /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "3"], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Chi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Chi]", " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], "k"], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], " ", SubscriptBox["c", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", FractionBox["k", "2"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Chi]", " ", "\[Pi]"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[SuperscriptBox["\[ImaginaryI]", "k"], " ", SuperscriptBox["2", RowBox[List["-", "k"]]], " ", SubscriptBox["c", "k"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", FractionBox["k", "2"]]]]]]]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["aa", "1"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"]]], "}"]], ",", FractionBox["1", "z"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "2"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "1"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "3"], "-", SubscriptBox["aa", "1"]]], "]"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "3"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", SubscriptBox["aa", "2"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "2"], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["aa", "2"], "-", SubscriptBox["aa", "1"]]], "}"]], ",", FractionBox["1", "z"]]], "]"]]]], RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["aa", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["bb", "3"], "-", SubscriptBox["aa", "2"]]], "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "&&", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox["1", "2"], "+", SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "2"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "3"]]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["c", "0"], "\[Equal]", "1"]], "&&", RowBox[List[SubscriptBox["c", "1"], "\[Equal]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["\[GothicCapitalB]", "-", "\[GothicCapitalA]", "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "-", SubscriptBox["B", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SubscriptBox["A", "2"]]], "+", SubscriptBox["B", "3"], "-", "2"]], ")"]]]], "-", FractionBox["3", "16"]]], ")"]]]]]], "&&", RowBox[List[SubscriptBox["c", "2"], "\[Equal]", RowBox[List[FractionBox[SubsuperscriptBox["c", "1", "2"], "2"], "+", RowBox[List[FractionBox["1", "16"], " ", RowBox[List["(", RowBox[List[RowBox[List["32", " ", "\[GothicCapitalR]"]], "+", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SubscriptBox["A", "2"], "-", SubscriptBox["B", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["8", " ", "\[GothicCapitalA]"]], "+", RowBox[List["11", " ", SubscriptBox["A", "2"]]], "-", RowBox[List["8", " ", SubsuperscriptBox["A", "2", "2"]]], "+", SubscriptBox["B", "3"], "-", "2"]], ")"]]]], "-", RowBox[List["16", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["A", "2"]]], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["\[GothicCapitalB]", "-", "\[GothicCapitalA]"]], ")"]]]], "-", "3"]], ")"]]]]]]]], "&&", RowBox[List[SubscriptBox["c", "k"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["A", "2"], "-", RowBox[List["3", " ", SubscriptBox["B", "3"]]], "-", RowBox[List["10", " ", "\[Chi]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]]]], "+", RowBox[List["5", " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "2"]]], "+", RowBox[List["2", " ", SubscriptBox["c", "1"]]]]], ")"]], " ", SubscriptBox["c", RowBox[List["k", "-", "1"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SubscriptBox["B", "3"]]], "-", RowBox[List["4", " ", "\[GothicCapitalB]"]], "-", RowBox[List["8", " ", "\[GothicCapitalR]"]], "-", RowBox[List["4", " ", RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List["4", " ", "\[GothicCapitalB]"]], "-", "1"]], ")"]], " ", "\[Chi]"]], "-", RowBox[List["24", " ", SubscriptBox["B", "3"], " ", SuperscriptBox["\[Chi]", "2"]]], "-", RowBox[List["32", " ", SuperscriptBox["\[Chi]", "3"]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List["4", " ", "\[GothicCapitalB]"]], "+", RowBox[List["12", " ", SubscriptBox["B", "3"], " ", "\[Chi]"]], "+", RowBox[List["24", " ", SuperscriptBox["\[Chi]", "2"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List["4", " ", "\[Chi]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "2"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["k", "-", "1"]], ")"]], "3"]]], "-", "1"]], ")"]], " ", SubscriptBox["c", RowBox[List["k", "-", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", RowBox[List["2", " ", SubscriptBox["bb", "1"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", RowBox[List["2", " ", SubscriptBox["bb", "2"]]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["k", "-", RowBox[List["2", " ", "\[Chi]"]], "-", RowBox[List["2", " ", SubscriptBox["bb", "3"]]], "-", "1"]], ")"]], " ", SubscriptBox["c", RowBox[List["k", "-", "3"]]]]]]], RowBox[List["2", " ", "k"]]]]], "&&", RowBox[List[SubscriptBox["A", "2"], "\[Equal]", RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["aa", "2"]]]]], "&&", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "+", SubscriptBox["bb", "3"]]]]], "&&", RowBox[List["\[GothicCapitalA]", "\[Equal]", RowBox[List[SubscriptBox["aa", "1"], " ", SubscriptBox["aa", "2"]]]]], "&&", RowBox[List["\[GothicCapitalB]", "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "2"]]], "+", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "3"]]], "+", RowBox[List[SubscriptBox["bb", "2"], " ", SubscriptBox["bb", "3"]]]]]]], "&&", RowBox[List["\[GothicCapitalR]", "\[Equal]", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "2"], " ", SubscriptBox["bb", "3"]]]]], "&&", RowBox[List["!", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "-", SubscriptBox["aa", "2"]]], "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|