Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] > Differential equations > Ordinary linear differential equations and wronskians > For the direct function itself





http://functions.wolfram.com/07.26.13.0006.01









  


  










Input Form





Wronskian[HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2]}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z], z^(1 - Subscript[b, 1]) HypergeometricPFQ[ {1 + Subscript[a, 1] - Subscript[b, 1], 1 + Subscript[a, 2] - Subscript[b, 1]}, {2 - Subscript[b, 1], 1 - Subscript[b, 1] + Subscript[b, 2], 1 - Subscript[b, 1] + Subscript[b, 3]}, z], z^(1 - Subscript[b, 2]) HypergeometricPFQ[ {1 + Subscript[a, 1] - Subscript[b, 2], 1 + Subscript[a, 2] - Subscript[b, 2]}, {2 - Subscript[b, 2], 1 + Subscript[b, 1] - Subscript[b, 2], 1 - Subscript[b, 2] + Subscript[b, 3]}, z], z^(1 - Subscript[b, 3]) HypergeometricPFQ[ {1 + Subscript[a, 1] - Subscript[b, 3], 1 + Subscript[a, 2] - Subscript[b, 3]}, {2 - Subscript[b, 3], 1 + Subscript[b, 1] - Subscript[b, 3], 1 + Subscript[b, 2] - Subscript[b, 3]}, z], z] == (-(-1 + Subscript[b, 1])) (-1 + Subscript[b, 2]) (-1 + Subscript[b, 3]) (Subscript[b, 1] - Subscript[b, 2]) (Subscript[b, 1] - Subscript[b, 3]) (Subscript[b, 2] - Subscript[b, 3]) z^(-3 - Subscript[b, 1] - Subscript[b, 2] - Subscript[b, 3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Wronskian", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], ",", RowBox[List[SuperscriptBox["z", RowBox[List["1", "-", SubscriptBox["b", "1"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", SubscriptBox["b", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "1"], "+", SubscriptBox["b", "3"]]]]], "}"]], ",", "z"]], "]"]]]], ",", RowBox[List[SuperscriptBox["z", RowBox[List["1", "-", SubscriptBox["b", "2"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]]]], "}"]], ",", "z"]], "]"]]]], ",", RowBox[List[SuperscriptBox["z", RowBox[List["1", "-", SubscriptBox["b", "3"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"], "-", SubscriptBox["b", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["a", "2"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", SubscriptBox["b", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "1"], "-", SubscriptBox["b", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]]]], "}"]], ",", "z"]], "]"]]]], ",", " ", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["b", "1"]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["b", "3"]]], ")"]], RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "-", SubscriptBox["b", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]], ")"]], SuperscriptBox["z", RowBox[List[RowBox[List["-", "3"]], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]]], " "]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> W </mi> <mi> z </mi> </msub> <mo> ( </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;3&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> , </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], &quot;+&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], &quot;+&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[RowBox[List[&quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;2&quot;]]], &quot;+&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;3&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;]]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;-&quot;, SubscriptBox[&quot;b&quot;, &quot;3&quot;], &quot;+&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 3 </mn> </mrow> </msup> <mtext> </mtext> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <ci> Subscript </ci> <ci> W </ci> <ci> z </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Wronskian", "[", RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", SubscriptBox["a_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], ",", RowBox[List[SuperscriptBox["z_", RowBox[List["1", "-", SubscriptBox["b_", "1"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a_", "1"], "-", SubscriptBox["b_", "1"]]], ",", RowBox[List["1", "+", SubscriptBox["a_", "2"], "-", SubscriptBox["b_", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", SubscriptBox["b_", "1"]]], ",", RowBox[List["1", "-", SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b_", "1"], "+", SubscriptBox["b_", "3"]]]]], "}"]], ",", "z_"]], "]"]]]], ",", RowBox[List[SuperscriptBox["z_", RowBox[List["1", "-", SubscriptBox["b_", "2"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a_", "1"], "-", SubscriptBox["b_", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["a_", "2"], "-", SubscriptBox["b_", "2"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", SubscriptBox["b_", "2"]]], ",", RowBox[List["1", "+", SubscriptBox["b_", "1"], "-", SubscriptBox["b_", "2"]]], ",", RowBox[List["1", "-", SubscriptBox["b_", "2"], "+", SubscriptBox["b_", "3"]]]]], "}"]], ",", "z_"]], "]"]]]], ",", RowBox[List[SuperscriptBox["z_", RowBox[List["1", "-", SubscriptBox["b_", "3"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a_", "1"], "-", SubscriptBox["b_", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["a_", "2"], "-", SubscriptBox["b_", "3"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["2", "-", SubscriptBox["b_", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["b_", "1"], "-", SubscriptBox["b_", "3"]]], ",", RowBox[List["1", "+", SubscriptBox["b_", "2"], "-", SubscriptBox["b_", "3"]]]]], "}"]], ",", "z_"]], "]"]]]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["bb", "1"]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["bb", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["bb", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "3"]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "3"]]], ")"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "3"]], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "3"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02