|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.26.17.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{a, Subscript[a, 2]}, {Subscript[b, 1], Subscript[b, 2],
Subscript[b, 3]}, z] ==
Subscript[B, 1] HypergeometricPFQ[{a - 1, Subscript[a, 2]},
{Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] +
(Subscript[B, 2] + Subscript[C, 2] z) HypergeometricPFQ[
{a - 2, Subscript[a, 2]}, {Subscript[b, 1], Subscript[b, 2],
Subscript[b, 3]}, z] + (Subscript[B, 3] + Subscript[C, 3] z)
HypergeometricPFQ[{a - 3, Subscript[a, 2]}, {Subscript[b, 1],
Subscript[b, 2], Subscript[b, 3]}, z] +
Subscript[B, 4] HypergeometricPFQ[{a - 4, Subscript[a, 2]},
{Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] /;
Subscript[B, 1] == (7 - 4 a + Subscript[b, 1] + Subscript[b, 2] +
Subscript[b, 3])/(1 - a) && Subscript[B, 2] ==
((3 a - 7) (Subscript[b, 1] + Subscript[b, 2] + Subscript[b, 3]) -
Subscript[b, 2] Subscript[b, 3] - Subscript[b, 1] Subscript[b, 2] -
Subscript[b, 1] Subscript[b, 3] - 31 + 27 a - 6 a^2)/
((a - 1) (a - 2)) && Subscript[C, 2] == 1/((a - 1) (a - 2)) &&
Subscript[B, 3] ==
((a - 3) (28 - 21 a + 4 a^2 + (8 - 3 a) (Subscript[b, 1] +
Subscript[b, 2] + Subscript[b, 3]) +
2 (Subscript[b, 2] Subscript[b, 3] + Subscript[b, 1] Subscript[b, 2] +
Subscript[b, 1] Subscript[b, 3])) - Subscript[b, 1] Subscript[b, 2]
Subscript[b, 3])/((a - 1) (a - 2) (a - 3)) &&
Subscript[C, 3] == (3 - a + Subscript[a, 2])/((a - 1) (a - 2) (a - 3)) &&
Subscript[B, 4] == -(((a - Subscript[b, 1] - 3) (a - Subscript[b, 2] - 3)
(a - Subscript[b, 3] - 3))/((a - 1) (a - 2) (a - 3)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SubscriptBox["B", "1"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "1"]], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "2"]], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "3"]], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["B", "4"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "4"]], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List["7", "-", RowBox[List["4", " ", "a"]], "+", SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], RowBox[List["1", "-", "a"]]]]], "\[And]", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a"]], "-", "7"]], ")"]], RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["b", "2"], SubscriptBox["b", "3"]]], "-", RowBox[List[SubscriptBox["b", "1"], SubscriptBox["b", "2"]]], "-", RowBox[List[SubscriptBox["b", "1"], SubscriptBox["b", "3"]]], "-", "31", "+", RowBox[List["27", " ", "a"]], "-", RowBox[List["6", " ", SuperscriptBox["a", "2"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["28", "-", RowBox[List["21", " ", "a"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["8", "-", RowBox[List["3", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["b", "1"], "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["b", "2"], " ", SubscriptBox["b", "3"]]], "+", RowBox[List[SubscriptBox["b", "1"], " ", SubscriptBox["b", "2"]]], "+", RowBox[List[SubscriptBox["b", "1"], SubscriptBox["b", "3"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SubscriptBox["b", "1"], " ", SubscriptBox["b", "2"], " ", SubscriptBox["b", "3"]]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]], ")"]]]]]], "\[And]", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", FractionBox[RowBox[List["3", "-", "a", "+", SubscriptBox["a", "2"]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]]]]], "\[And]", RowBox[List[SubscriptBox["B", "4"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["b", "1"], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", SubscriptBox["b", "2"], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", SubscriptBox["b", "3"], "-", "3"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "-", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "-", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "-", "3"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <msub> <mi> B </mi> <mn> 4 </mn> </msub> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> a </mi> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "-", "4"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> /; </mo> <mrow> <mrow> <msub> <mi> B </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mn> 7 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 27 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mn> 31 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 3 </mn> </msub> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 8 </mn> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 28 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> C </mi> <mn> 3 </mn> </msub> <mo> ⩵ </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mi> a </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> B </mi> <mn> 4 </mn> </msub> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> -3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 4 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <plus /> <ci> a </ci> <cn type='integer'> -4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> 7 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 27 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -31 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 8 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 28 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> C </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> B </ci> <cn type='integer'> 4 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -3 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <ci> a </ci> <cn type='integer'> -3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", SubscriptBox["a_", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SubscriptBox["B", "1"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "1"]], ",", SubscriptBox["aa", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "2"], "+", RowBox[List[SubscriptBox["C", "2"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "2"]], ",", SubscriptBox["aa", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["B", "3"], "+", RowBox[List[SubscriptBox["C", "3"], " ", "z"]]]], ")"]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "3"]], ",", SubscriptBox["aa", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]], "+", RowBox[List[SubscriptBox["B", "4"], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["a", "-", "4"]], ",", SubscriptBox["aa", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", SubscriptBox["bb", "2"], ",", SubscriptBox["bb", "3"]]], "}"]], ",", "z"]], "]"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["B", "1"], "\[Equal]", FractionBox[RowBox[List["7", "-", RowBox[List["4", " ", "a"]], "+", SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "+", SubscriptBox["bb", "3"]]], RowBox[List["1", "-", "a"]]]]], "&&", RowBox[List[SubscriptBox["B", "2"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a"]], "-", "7"]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "+", SubscriptBox["bb", "3"]]], ")"]]]], "-", RowBox[List[SubscriptBox["bb", "2"], " ", SubscriptBox["bb", "3"]]], "-", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "2"]]], "-", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "3"]]], "-", "31", "+", RowBox[List["27", " ", "a"]], "-", RowBox[List["6", " ", SuperscriptBox["a", "2"]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "2"], "\[Equal]", FractionBox["1", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["B", "3"], "\[Equal]", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["28", "-", RowBox[List["21", " ", "a"]], "+", RowBox[List["4", " ", SuperscriptBox["a", "2"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["8", "-", RowBox[List["3", " ", "a"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SubscriptBox["bb", "1"], "+", SubscriptBox["bb", "2"], "+", SubscriptBox["bb", "3"]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[SubscriptBox["bb", "2"], " ", SubscriptBox["bb", "3"]]], "+", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "2"]]], "+", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "3"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List[SubscriptBox["bb", "1"], " ", SubscriptBox["bb", "2"], " ", SubscriptBox["bb", "3"]]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["C", "3"], "\[Equal]", FractionBox[RowBox[List["3", "-", "a", "+", SubscriptBox["aa", "2"]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]]]]], "&&", RowBox[List[SubscriptBox["B", "4"], "\[Equal]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["bb", "1"], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", SubscriptBox["bb", "2"], "-", "3"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", SubscriptBox["bb", "3"], "-", "3"]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["a", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "2"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "-", "3"]], ")"]]]]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] | |
|
|
|