  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.26.17.0022.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2]}, 
  {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]}, z] == 
 Sum[(z^k/k!) ((Pochhammer[Subscript[a, 1], k] Pochhammer[Subscript[a, 2], 
      k])/Product[Pochhammer[Subscript[b, j], k], {j, 1, 3}]) 
   HypergeometricPFQ[{1, (Subscript[a, 1] + k)/n, \[Ellipsis], 
     (Subscript[a, 1] + k + n - 1)/n, (Subscript[a, 2] + k)/n, \[Ellipsis], 
     (Subscript[a, 2] + k + n - 1)/n}, {(k + 1)/n, \[Ellipsis], (k + n)/n, 
     (Subscript[b, 1] + k)/n, \[Ellipsis], (Subscript[b, 1] + k + n - 1)/n, 
     (Subscript[b, 2] + k)/n, \[Ellipsis], (Subscript[b, 2] + k + n - 1)/n, 
     (Subscript[b, 3] + k)/n, \[Ellipsis], (Subscript[b, 3] + k + n - 1)/n}, 
    z^n/n^(2 n)], {k, 0, n - 1}] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[SuperscriptBox["z", "k"], RowBox[List["k", "!"]]], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "1"], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "2"], ",", "k"]], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "3"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["b", "j"], ",", "k"]], "]"]]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["a", "2"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "2"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "2"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "2"], "+", "k", "+", "n", "-", "1"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "3"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "3"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List[RowBox[List["-", "2"]], "n"]]], SuperscriptBox["z", "n"]]]]], "]"]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mi> n </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mi> z </mi>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "1"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "2"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  <mrow>  <mrow>  <mi> k </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mn> 3 </mn>  </munderover>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["b", "j"], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mi> n </mi>  </mfrac>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mfrac>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mi> n </mi>  <mo> + </mo>  <msub>  <mi> b </mi>  <mn> 3 </mn>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mi> n </mi>  </mfrac>  <mo> ; </mo>  <mrow>  <msup>  <mi> n </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> n </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mi> n </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List[RowBox[List["2", "n"]], "+", "1"]], TraditionalForm]], SubscriptBox["F", RowBox[List["4", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["a", "1"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["a", "1"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["a", "2"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", RowBox[List[TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["a", "2"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[FractionBox[RowBox[List["k", "+", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]]]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "1"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "1"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "2"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "2"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["k", "+", SubscriptBox["b", "3"]]], "n"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", RowBox[List[TagBox[FractionBox[RowBox[List["k", "+", "n", "+", SubscriptBox["b", "3"], "-", "1"]], "n"], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[RowBox[List[SuperscriptBox["n", RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", SuperscriptBox["z", "n"]]], HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  </list>  <list>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 3 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <ci> z </ci>  <ci> k </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> k </ci>  </apply>  <apply>  <ci> Pochhammer </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> k </ci>  </apply>  <apply>  <power />  <apply>  <times />  <apply>  <factorial />  <ci> k </ci>  </apply>  <apply>  <product />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <cn type='integer'> 3 </cn>  </uplimit>  <apply>  <ci> Pochhammer </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <ci> j </ci>  </apply>  <ci> k </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> HypergeometricPFQ </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <ci> k </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <power />  <ci> n </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  | HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] |  |   |  
  |  
  
  
  
 |  
 
 |