|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0021.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[b, 1] - 2, Subscript[b, 2] - 2, \[Ellipsis],
Subscript[b, n + 1] - 2, Subscript[b, n + 2] - 1,
Subscript[b, n + 3] - 1, \[Ellipsis], Subscript[b, q + 1] - 1},
{Subscript[b, 1], Subscript[b, 2], \[Ellipsis], Subscript[b, q]}, z] ==
(((-1)^n 2^q)/z) ((1/z) Sum[(Pochhammer[n, k]/k!) PolyLog[q - k, z],
{k, 0, q - 1}] + Sum[(((-1)^(n - k) Pochhammer[q, k])/k!)
PolyLog[n - k, z], {k, 0, n - 1}] - Binomial[n + q - 1, n]) /;
Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] == Subscript[b, q] == 3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "1"], "-", "2"]], ",", RowBox[List[SubscriptBox["b", "2"], "-", "2"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "1"]]], "-", "2"]], ",", RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "2"]]], "-", "1"]], ",", RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "3"]]], "-", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", RowBox[List["q", "+", "1"]]], "-", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], SuperscriptBox["2", "q"]]], "z"], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "z"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "1"]]], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List["n", ",", "k"]], "]"]], RowBox[List["k", "!"]]], RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["q", " ", "-", "k"]], ",", "z"]], "]"]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List["q", ",", "k"]], "]"]]]], RowBox[List["k", "!"]]], RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", " ", "-", "k"]], ",", "z"]], "]"]]]]]], "-", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "q", "-", "1"]], ",", "n"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", "q"], "\[Equal]", "3"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "1"], "-", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", "2"], "-", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "1"]]], "-", "2"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "2"]]], "-", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "3"]]], "-", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["b", RowBox[List["q", "+", "1"]]], "-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mi> q </mi> </msup> </mrow> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "n", ")"]], "k"], Pochhammer] </annotation> </semantics> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> q </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", "q", ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> + </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "+", "q", "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox["n", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mo> … </mo> <mo> ⩵ </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> ⩵ </mo> <mn> 3 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> … </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <ci> q </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|