Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > Specific values > Specialized values > Case q+1Fq





http://functions.wolfram.com/07.31.03.0021.01









  


  










Input Form





HypergeometricPFQ[{Subscript[b, 1] - 2, Subscript[b, 2] - 2, \[Ellipsis], Subscript[b, n + 1] - 2, Subscript[b, n + 2] - 1, Subscript[b, n + 3] - 1, \[Ellipsis], Subscript[b, q + 1] - 1}, {Subscript[b, 1], Subscript[b, 2], \[Ellipsis], Subscript[b, q]}, z] == (((-1)^n 2^q)/z) ((1/z) Sum[(Pochhammer[n, k]/k!) PolyLog[q - k, z], {k, 0, q - 1}] + Sum[(((-1)^(n - k) Pochhammer[q, k])/k!) PolyLog[n - k, z], {k, 0, n - 1}] - Binomial[n + q - 1, n]) /; Subscript[b, 1] == Subscript[b, 2] == \[Ellipsis] == Subscript[b, q] == 3










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["b", "1"], "-", "2"]], ",", RowBox[List[SubscriptBox["b", "2"], "-", "2"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "1"]]], "-", "2"]], ",", RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "2"]]], "-", "1"]], ",", RowBox[List[SubscriptBox["b", RowBox[List["n", "+", "3"]]], "-", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", RowBox[List["q", "+", "1"]]], "-", "1"]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], SuperscriptBox["2", "q"]]], "z"], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "z"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["q", "-", "1"]]], RowBox[List[FractionBox[RowBox[List["Pochhammer", "[", RowBox[List["n", ",", "k"]], "]"]], RowBox[List["k", "!"]]], RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["q", " ", "-", "k"]], ",", "z"]], "]"]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["n", "-", "k"]]], RowBox[List["Pochhammer", "[", RowBox[List["q", ",", "k"]], "]"]]]], RowBox[List["k", "!"]]], RowBox[List["PolyLog", "[", RowBox[List[RowBox[List["n", " ", "-", "k"]], ",", "z"]], "]"]]]]]], "-", RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "+", "q", "-", "1"]], ",", "n"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[SubscriptBox["b", "1"], "\[Equal]", SubscriptBox["b", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["b", "q"], "\[Equal]", "3"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> n </mi> <mo> + </mo> <mn> 3 </mn> </mrow> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;q&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;-&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;2&quot;], &quot;-&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;-&quot;, &quot;2&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;2&quot;]]], &quot;-&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;3&quot;]]], &quot;-&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]]], &quot;-&quot;, &quot;1&quot;]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;2&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQRegularized, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mi> q </mi> </msup> </mrow> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <semantics> <msub> <mrow> <mo> ( </mo> <mi> n </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;n&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> q </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mi> q </mi> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List[&quot;(&quot;, &quot;q&quot;, &quot;)&quot;]], &quot;k&quot;], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msub> <semantics> <mi> Li </mi> <annotation-xml encoding='MathML-Content'> <ci> PolyLog </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mi> k </mi> </mrow> </msub> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> - </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> + </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[RowBox[List[&quot;n&quot;, &quot;+&quot;, &quot;q&quot;, &quot;-&quot;, &quot;1&quot;]], Identity, Rule[Editable, True]]], List[TagBox[&quot;n&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> &#10869; </mo> <mo> &#8230; </mo> <mo> &#10869; </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> &#10869; </mo> <mn> 3 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -2 </cn> </apply> <ci> &#8230; </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> n </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <ci> &#8230; </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <ci> q </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <ci> Pochhammer </ci> <ci> q </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <factorial /> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> PolyLog </ci> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Binomial </ci> <apply> <plus /> <ci> n </ci> <ci> q </ci> <cn type='integer'> -1 </cn> </apply> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2001-10-29