|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0022.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1], Subscript[a, 2], \[Ellipsis],
Subscript[a, q + 1]}, {Subscript[a, 1] - 1, Subscript[a, 2] - 1,
\[Ellipsis], Subscript[a, q] - 1}, z] ==
Sum[(((k + 1) (-z)^k)/(1 - z)^(k + 2)) Sum[(-1)^j Binomial[k, j] (j + 1)^q,
{j, 0, k}], {k, 0, q}] /; Subscript[a, 1] == Subscript[a, 2] ==
\[Ellipsis] == Subscript[a, q + 1] == 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "-", "1"]], ",", RowBox[List[SubscriptBox["a", "2"], "-", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", "q"], "-", "1"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "q"], RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["k", "+", "1"]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "k"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["k", "+", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["Binomial", "[", RowBox[List["k", ",", "j"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["j", "+", "1"]], ")"]], "q"]]]]]]]]]]], "/;", RowBox[List[SubscriptBox["a", "1"], "\[Equal]", SubscriptBox["a", "2"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["q", "+", "1"]]], "\[Equal]", "2"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mi> q </mi> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[SubscriptBox["a", "1"], ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "1"], "-", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[TagBox[RowBox[List[SubscriptBox["a", "2"], "-", "1"]], HypergeometricPFQ, Rule[Editable, True]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "q"], "-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> j </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> j </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["k", Identity, Rule[Editable, True]]], List[TagBox["j", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> j </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> q </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> ⩵ </mo> <mo> … </mo> <mo> ⩵ </mo> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ⩵ </mo> <mn> 2 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQRegularized </ci> <list /> <list> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> HypergeometricPFQ </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> j </ci> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> j </ci> </apply> <apply> <power /> <apply> <plus /> <ci> j </ci> <cn type='integer'> 1 </cn> </apply> <ci> q </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|