|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0027.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{1, a, a, Subscript[a, 4], \[Ellipsis],
Subscript[a, q + 1]}, {a + 1, a + 1, Subscript[a, 4] + 1, \[Ellipsis],
Subscript[a, q + 1] + 1}, 1] ==
(-a^2) Product[Subscript[a, j], {j, 4, q + 1}]
(Sum[Product[If[l == k, 1, PolyGamma[Subscript[a, k]]/
((Subscript[a, l] - Subscript[a, k]) (a - Subscript[a, k])^2)],
{l, 4, q + 1}] + (PolyGamma[a]/(a - Subscript[a, k]))
Product[1/(Subscript[a, l] - a), {l, 4, q + 1}], {k, 4, q + 1}] -
PolyGamma[1, a] Product[1/(Subscript[a, l] - a), {l, 4, q + 1}]) /;
Subscript[a, l] != Subscript[a, k] && 4 <= l <= q + 1 && 4 <= k <= q + 1 &&
l != k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "a", ",", "a", ",", SubscriptBox["a", "4"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["a", "+", "1"]], ",", RowBox[List["a", "+", "1"]], ",", RowBox[List[SubscriptBox["a", "4"], "+", "1"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "+", "1"]]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", SuperscriptBox["a", "2"]]], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "4"]], RowBox[List["q", "+", "1"]]], SubscriptBox["a", "j"]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "4"]], RowBox[List["q", "+", "1"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["l", "=", "4"]], RowBox[List["q", "+", "1"]]], RowBox[List["If", "[", RowBox[List[RowBox[List["l", "\[Equal]", "k"]], ",", "1", ",", FractionBox[RowBox[List["PolyGamma", "[", SubscriptBox["a", "k"], "]"]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "l"], "-", SubscriptBox["a", "k"]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", SubscriptBox["a", "k"]]], ")"]], "2"]]]]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["PolyGamma", "[", "a", "]"]], RowBox[List["a", "-", SubscriptBox["a", "k"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["l", "=", "4"]], RowBox[List["q", "+", "1"]]], FractionBox["1", RowBox[List[SubscriptBox["a", "l"], "-", "a"]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", ",", "a"]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["l", "=", "4"]], RowBox[List["q", "+", "1"]]], FractionBox["1", RowBox[List[SubscriptBox["a", "l"], "-", "a"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[SubscriptBox["a", "l"], "\[NotEqual]", SubscriptBox["a", "k"]]], "\[And]", RowBox[List["4", "\[LessEqual]", "l", "\[LessEqual]", RowBox[List["q", "+", "1"]]]], "\[And]", RowBox[List["4", "\[LessEqual]", "k", "\[LessEqual]", RowBox[List["q", "+", "1"]]]], "\[And]", RowBox[List["l", "\[NotEqual]", "k"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ; </mo> <mrow> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 4 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "4"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", RowBox[List[TagBox[SubscriptBox["a", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", "4"], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "+", "1"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 4 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 4 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> l </mi> <mo> = </mo> <mn> 4 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> a </mi> <mi> l </mi> </msub> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> </mrow> <mo> + </mo> <mrow> <munderover> <mo> ∏ </mo> <munder> <mrow> <mi> l </mi> <mo> = </mo> <mn> 4 </mn> </mrow> <mrow> <mi> l </mi> <mo> ≠ </mo> <mi> k </mi> </mrow> </munder> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> l </mi> </msub> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> l </mi> <mo> = </mo> <mn> 4 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mfrac> <mn> 1 </mn> <mrow> <msub> <mi> a </mi> <mi> l </mi> </msub> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> l </mi> </msub> <mo> ≠ </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> ∧ </mo> <mrow> <mn> 4 </mn> <mo> ≤ </mo> <mi> l </mi> <mo> ≤ </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mn> 4 </mn> <mo> ≤ </mo> <mi> k </mi> <mo> ≤ </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> l </mi> <mo> ≠ </mo> <mi> k </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms>  </ms> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <apply> <ci> FormBox </ci> <ms> q </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> a </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> a </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 4 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> … </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 4 </ms> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> … </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <false /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <ms> 1 </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Slot </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Slot </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ci> HypergeometricPFQ </ci> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <apply> <ci> SuperscriptBox </ci> <ms> a </ms> <ms> 2 </ms> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 4 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> j </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 4 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <ms> a </ms> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> l </ms> <ms> = </ms> <ms> 4 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> l </ms> </apply> <ms> - </ms> <ms> a </ms> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> UnderscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> l </ms> <ms> = </ms> <ms> 4 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> l </ms> <ms> ≠ </ms> <ms> k </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> l </ms> </apply> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> a </ms> <ms> - </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <ms> 1 </ms> <ms> ) </ms> </list> </apply> </apply> <ms> ( </ms> <ms> a </ms> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> l </ms> <ms> = </ms> <ms> 4 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> l </ms> </apply> <ms> - </ms> <ms> a </ms> </list> </apply> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> l </ms> </apply> <ms> ≠ </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <ms> ≤ </ms> <ms> l </ms> <ms> ≤ </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <ms> ≤ </ms> <ms> k </ms> <ms> ≤ </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> l </ms> <ms> ≠ </ms> <ms> k </ms> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|