  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.31.03.0067.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQ[{1, Subscript[a, 2], \[Ellipsis], Subscript[a, q + 1]}, 
   {Subscript[a, 2] + 2, \[Ellipsis], Subscript[a, q + 1] + 2}, -1] == 
  (-1)^(q - 1) 2^(q + 1) (Sum[Binomial[2 q - 2 k - 2, q - 1] (1 - 2^(-2 k)) 
      Zeta[2 k + 1], {k, 1, Floor[(q - 1)/2]}] - 
    (1/2) Binomial[2 q - 1, q - 1] + Binomial[2 q - 2, q - 1] Log[2]) /; 
 Subscript[a, 2] == Subscript[a, 3] == \[Ellipsis] == Subscript[a, q + 1] == 1 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "+", "2"]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "+", "2"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["q", "-", "1"]]], SuperscriptBox["2", RowBox[List["q", "+", "1"]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], RowBox[List["Floor", "[", FractionBox[RowBox[List["q", "-", "1"]], "2"], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", "q"]], "-", RowBox[List["2", "k"]], "-", "2"]], ",", RowBox[List["q", "-", "1"]]]], "]"]], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "k"]]]]], ")"]], RowBox[List["Zeta", "[", RowBox[List[RowBox[List["2", "k"]], "+", "1"]], "]"]]]]]], "-", RowBox[List[FractionBox["1", "2"], RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", "q"]], "-", "1"]], ",", RowBox[List["q", "-", "1"]]]], "]"]]]], "+", RowBox[List[RowBox[List["Binomial", "[", RowBox[List[RowBox[List[RowBox[List["2", "q"]], "-", "2"]], ",", RowBox[List["q", "-", "1"]]]], "]"]], RowBox[List["Log", "[", "2", "]"]]]]]], ")"]]]]]], "/;", RowBox[List[SubscriptBox["a", "2"], "\[Equal]", SubscriptBox["a", "3"], "\[Equal]", "\[Ellipsis]", "\[Equal]", SubscriptBox["a", RowBox[List["q", "+", "1"]]], "\[Equal]", "1"]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[RowBox[List[TagBox[TagBox[RowBox[List["1", ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", RowBox[List[SubscriptBox["a", "2"], "+", "2"]]]], ",", "\[Ellipsis]", ",", RowBox[List[RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "+", "2"]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> q </mi>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "q"]], "-", "2"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["q", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 2 </mn>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> q </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "q"]], "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["q", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> q </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "q"]], "-", RowBox[List["2", "k"]], "-", "2"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["q", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> ⩵ </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> ⩵ </mo>  <mo> … </mo>  <mo> ⩵ </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> ⩵ </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <msub>  <mi> F </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mn> 1 </mn>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ; </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[RowBox[List[TagBox[TagBox[RowBox[List["1", ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", RowBox[List[SubscriptBox["a", "2"], "+", "2"]]]], ",", "\[Ellipsis]", ",", RowBox[List[RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "+", "2"]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> q </mi>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "q"]], "-", "2"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["q", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mn> 2 </mn>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> q </mi>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "q"]], "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["q", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> q </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  </mtd>  </mtr>  <mtr>  <mtd>  <mrow>  <mi> q </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List[RowBox[List["2", " ", "q"]], "-", RowBox[List["2", "k"]], "-", "2"]], Identity, Rule[Editable, True]]], List[TagBox[RowBox[List["q", "-", "1"]], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mi> ζ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", TagBox[RowBox[List[RowBox[List["2", " ", "k"]], "+", "1"]], Rule[Editable, True]], ")"]], InterpretTemplate[Function[$CellContext`e, Zeta[$CellContext`e]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> ⩵ </mo>  <msub>  <mi> a </mi>  <mn> 3 </mn>  </msub>  <mo> ⩵ </mo>  <mo> … </mo>  <mo> ⩵ </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> ⩵ </mo>  <mn> 1 </mn>  </mrow>  </mrow>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
| HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  |   |  
  |  
  
  
  
 |  
 
 |