|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0079.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{}, {1/(q + 1), 2/(q + 1), \[Ellipsis], q/(q + 1)}, z] ==
(1/(q + 1)) Sum[Exp[(q + 1) Exp[(2 Pi I k)/(q + 1)] z^(1/(q + 1))],
{k, 0, q}] /; Element[q, Integers] && q > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", RowBox[List["q", "+", "1"]]], ",", FractionBox["2", RowBox[List["q", "+", "1"]]], ",", "\[Ellipsis]", ",", FractionBox["q", RowBox[List["q", "+", "1"]]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["q", "+", "1"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "q"], RowBox[List["Exp", "[", RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], RowBox[List["Exp", "[", FractionBox[RowBox[List["2", "\[Pi]", " ", "\[ImaginaryI]", " ", "k"]], RowBox[List["q", "+", "1"]]], "]"]], SuperscriptBox["z", RowBox[List["1", "/", RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]]]]]]], "]"]]]]]]]], "/;", RowBox[List[RowBox[List["q", "\[Element]", "Integers"]], "\[And]", RowBox[List["q", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mi> q </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["2", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["q", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mfrac> <mn> 1 </mn> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <and /> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <ci> … </ci> <apply> <times /> <ci> q </ci> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <exp /> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <imaginaryi /> <ci> k </ci> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> q </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|