|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0158.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{}, {1/2, b, -b}, -z] == ((Pi Csc[2 b Pi])/(Sqrt[2] b))
((b z^(1/4) BesselI[2 b, 2 Sqrt[2] z^(1/4)] + Sqrt[2] Sqrt[z]
BesselI[1 + 2 b, 2 Sqrt[2] z^(1/4)]) BesselJ[1 - 2 b,
2 Sqrt[2] z^(1/4)] + b (Sqrt[2] b BesselI[2 b, 2 Sqrt[2] z^(1/4)] +
z^(1/4) BesselI[1 + 2 b, 2 Sqrt[2] z^(1/4)])
BesselJ[-2 b, 2 Sqrt[2] z^(1/4)] +
b ((-z^(1/4)) BesselI[1 - 2 b, 2 Sqrt[2] z^(1/4)] +
Sqrt[2] b BesselI[-2 b, 2 Sqrt[2] z^(1/4)])
BesselJ[2 b, 2 Sqrt[2] z^(1/4)] +
(Sqrt[2] Sqrt[z] BesselI[1 - 2 b, 2 Sqrt[2] z^(1/4)] -
b z^(1/4) BesselI[-2 b, 2 Sqrt[2] z^(1/4)])
BesselJ[1 + 2 b, 2 Sqrt[2] z^(1/4)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "b", ",", RowBox[List["-", "b"]]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["2", " ", "b", " ", "\[Pi]"]], "]"]]]], RowBox[List[SqrtBox["2"], " ", "b"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["2", " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox["z"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["b", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", "b", " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["2", " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["b", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", "b", " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["2", " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox["z"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "-", RowBox[List["b", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox["b", HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[RowBox[List["-", "b"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation> </semantics> <mo>  </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> I </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> + </mo> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <msub> <mi> I </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msub> <mi> J </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msub> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 1 <sep /> 2 </cn> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <csc /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <ci> BesselI </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> -2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <ci> BesselI </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> BesselI </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> BesselJ </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", "b_", ",", RowBox[List["-", "b_"]]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["2", " ", "b", " ", "\[Pi]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["2", " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox["z"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", "b", " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["2", " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[SqrtBox["2"], " ", "b", " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["2", " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", SqrtBox["z"], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List["1", "-", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "-", RowBox[List["b", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]], " ", RowBox[List["BesselI", "[", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b"]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["BesselJ", "[", RowBox[List[RowBox[List["1", "+", RowBox[List["2", " ", "b"]]]], ",", RowBox[List["2", " ", SqrtBox["2"], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List[SqrtBox["2"], " ", "b"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|