| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.31.03.0164.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{}, {1/2, 1/2, 1/2}, -z] == 
 (-(z/4)^(1/4)) (2 BesselJ[1, 2^(3/2) z^(1/4)] BesselK[0, 2^(3/2) z^(1/4)] - 
   2 BesselJ[0, 2^(3/2) z^(1/4)] BesselK[1, 2^(3/2) z^(1/4)] + 
   Pi BesselY[1, 2^(3/2) z^(1/4)] BesselI[0, 2^(3/2) z^(1/4)] + 
   Pi BesselY[0, 2^(3/2) z^(1/4)] BesselI[1, 2^(3/2) z^(1/4)]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["-", "z"]]]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List["1", "/", "4"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["BesselY", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["BesselY", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 3 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", "0"], SubscriptBox["F", "3"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False], Rule[Selectable, False]], ";", TagBox[RowBox[List["-", "z"]], HypergeometricPFQ, Rule[Editable, True], Rule[Selectable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False], Rule[Selectable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> - </mo>  <mroot>  <mfrac>  <mi> z </mi>  <mn> 4 </mn>  </mfrac>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mn> 1 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> K </mi>  <mn> 0 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> J </mi>  <mn> 0 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> K </mi>  <mn> 1 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mn> 1 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> Y </mi>  <mn> 0 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> I </mi>  <mn> 0 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msub>  <mi> Y </mi>  <mn> 1 </mn>  </msub>  <mo> ( </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mn> 3 </mn>  <mo> / </mo>  <mn> 2 </mn>  </mrow>  </msup>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 4 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <list />  <list>  <cn type='rational'> 1 <sep /> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </list>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <apply>  <times />  <ci> z </ci>  <apply>  <power />  <cn type='integer'> 4 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> BesselJ </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> BesselK </ci>  <cn type='integer'> 0 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <ci> BesselJ </ci>  <cn type='integer'> 0 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> BesselK </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <pi />  <apply>  <ci> BesselI </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> BesselY </ci>  <cn type='integer'> 0 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <pi />  <apply>  <ci> BesselI </ci>  <cn type='integer'> 0 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> BesselY </ci>  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='rational'> 3 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 4 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", FractionBox["1", "2"]]], "}"]], ",", RowBox[List["-", "z_"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", SuperscriptBox[RowBox[List["(", FractionBox["z", "4"], ")"]], RowBox[List["1", "/", "4"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["BesselJ", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselK", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["BesselJ", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselK", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["BesselY", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]], "+", RowBox[List["\[Pi]", " ", RowBox[List["BesselY", "[", RowBox[List["0", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]], " ", RowBox[List["BesselI", "[", RowBox[List["1", ",", RowBox[List[SuperscriptBox["2", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]]], "]"]]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  |  | 
 | 
 
 | 
 |