|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0121.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{}, {1/5, 2/5, 3/5, 4/5}, z] ==
(1/5) Exp[5 z^(1/5)] + (2/5) (Exp[((5 (Sqrt[5] - 1))/4) z^(1/5)]
Cos[(5/2) Sqrt[(1/2) (5 + Sqrt[5])] z^(1/5)] +
Exp[(-((5 (Sqrt[5] + 1))/4)) z^(1/5)]
Cos[(5/2) Sqrt[(1/2) (5 - Sqrt[5])] z^(1/5)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "5"], ",", FractionBox["2", "5"], ",", FractionBox["3", "5"], ",", FractionBox["4", "5"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["1", "5"], RowBox[List["Exp", "[", RowBox[List["5", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]], "+", RowBox[List[FractionBox["2", "5"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Exp", "[", RowBox[List[FractionBox[RowBox[List["5", RowBox[List["(", RowBox[List[SqrtBox["5"], "-", "1"]], ")"]]]], "4"], SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]], RowBox[List["Cos", "[", RowBox[List[FractionBox["5", "2"], " ", SqrtBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["Exp", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["5", RowBox[List["(", RowBox[List[SqrtBox["5"], "+", "1"]], ")"]]]], "4"]]], SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]], RowBox[List["Cos", "[", RowBox[List[FractionBox["5", "2"], " ", SqrtBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["5", "-", SqrtBox["5"]]], ")"]]]]], SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 4 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 5 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 2 </mn> <mn> 5 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 5 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 4 </mn> <mn> 5 </mn> </mfrac> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["4", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "5"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["2", "5"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "5"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["4", "5"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mn> 2 </mn> <mn> 5 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> + </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 5 </mn> </msqrt> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> - </mo> <msqrt> <mn> 5 </mn> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mn> 5 </mn> </msqrt> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 5 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 5 </mn> </mroot> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <cn type='rational'> 1 <sep /> 5 </cn> <cn type='rational'> 2 <sep /> 5 </cn> <cn type='rational'> 3 <sep /> 5 </cn> <cn type='rational'> 4 <sep /> 5 </cn> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 2 <sep /> 5 </cn> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <power /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <cos /> <apply> <times /> <cn type='rational'> 5 <sep /> 2 </cn> <apply> <power /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='integer'> 5 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> <apply> <exp /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <plus /> <apply> <power /> <cn type='integer'> 5 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 5 </cn> <apply> <exp /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 5 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "5"], ",", FractionBox["2", "5"], ",", FractionBox["3", "5"], ",", FractionBox["4", "5"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "5"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["5", " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]]]], "+", RowBox[List[FractionBox["2", "5"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["5", " ", RowBox[List["(", RowBox[List[SqrtBox["5"], "-", "1"]], ")"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["5", "2"], " ", SqrtBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["5", "+", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["-", RowBox[List["(", RowBox[List["5", " ", RowBox[List["(", RowBox[List[SqrtBox["5"], "+", "1"]], ")"]]]], ")"]]]], ")"]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]]], " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["5", "2"], " ", SqrtBox[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["5", "-", SqrtBox["5"]]], ")"]]]]], " ", SuperscriptBox["z", RowBox[List["1", "/", "5"]]]]], "]"]]]]]], ")"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|