|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0128.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{a, b, c}, {d, e}, 1] == (-1)^(d - e) Sqrt[Gamma[1 - a]]
Sqrt[Gamma[1 - b]] Sqrt[Gamma[1 - c]] Gamma[d] Gamma[e]
Sqrt[Gamma[d + e - a - b - c]]
(ThreeJSymbol[{(d - a - b - 1)/2, (b + d - a - 1)/2},
{(e - a - c - 1)/2, (a + 1 - c - e)/2}, {(d + e - b - c)/2 - 1,
-((b + d - c - e)/2)}]/(Sqrt[Gamma[-a + d]] Sqrt[Gamma[-b + d]]
Sqrt[Gamma[-c + d]] Sqrt[Gamma[-a + e]] Sqrt[Gamma[-b + e]]
Sqrt[Gamma[-c + e]])) /; Re[d + e - a - b - c] > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a", ",", "b", ",", "c"]], "}"]], ",", RowBox[List["{", RowBox[List["d", ",", "e"]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["d", "-", "e"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "c"]], "]"]]], " ", RowBox[List["Gamma", "[", "d", "]"]], " ", RowBox[List["Gamma", "[", "e", "]"]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["d", "+", "e", "-", "a", "-", "b", "-", "c"]], "]"]]], " ", RowBox[List[RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List["d", "-", "a", "-", "b", "-", "1"]], "2"], ",", FractionBox[RowBox[List["b", "+", "d", "-", "a", "-", "1"]], "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["e", "-", "a", "-", "c", "-", "1"]], "2"], ",", FractionBox[RowBox[List["a", "+", "1", "-", "c", "-", "e"]], "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox[RowBox[List["d", "+", "e", "-", "b", "-", "c"]], "2"], "-", "1"]], ",", RowBox[List["-", FractionBox[RowBox[List["b", "+", "d", "-", "c", "-", "e"]], "2"]]]]], "}"]]]], "]"]], "/", RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "d"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "+", "d"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "c"]], "+", "d"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "e"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "+", "e"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "c"]], "+", "e"]], "]"]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", RowBox[List["d", "+", "e", "-", "a", "-", "b", "-", "c"]], "]"]], ">", "0"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 3 </mn> </msub> <msub> <mi> F </mi> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> <mo> , </mo> <mi> c </mi> </mrow> <mo> ; </mo> <mrow> <mi> d </mi> <mo> , </mo> <mi> e </mi> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["3", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["b", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["c", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["d", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["e", HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> d </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> e </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mo> ( </mo> <annotation encoding='Mathematica'> TagBox[StyleBox["(", Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> <mtext>   </mtext> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi> d </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mi> e </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mtd> <mtd> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> d </mi> </mrow> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mtext>   </mtext> <semantics> <mo> ) </mo> <annotation encoding='Mathematica'> TagBox[StyleBox[")", Rule[SpanMaxSize, DirectedInfinity[1]]], ThreeJSymbol] </annotation> </semantics> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <ci> a </ci> <ci> b </ci> <ci> c </ci> </list> <list> <ci> d </ci> <ci> e </ci> </list> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> d </ci> </apply> <apply> <ci> Gamma </ci> <ci> e </ci> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> d </ci> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> ThreeJSymbol </ci> <list> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <times /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> </apply> </apply> </apply> <apply> <gt /> <apply> <real /> <apply> <plus /> <ci> d </ci> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "b_", ",", "c_"]], "}"]], ",", RowBox[List["{", RowBox[List["d_", ",", "e_"]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["d", "-", "e"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "a"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "b"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["1", "-", "c"]], "]"]]], " ", RowBox[List["Gamma", "[", "d", "]"]], " ", RowBox[List["Gamma", "[", "e", "]"]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List["d", "+", "e", "-", "a", "-", "b", "-", "c"]], "]"]]], " ", RowBox[List["ThreeJSymbol", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["d", "-", "a", "-", "b", "-", "1"]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["b", "+", "d", "-", "a", "-", "1"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["e", "-", "a", "-", "c", "-", "1"]], ")"]]]], ",", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["a", "+", "1", "-", "c", "-", "e"]], ")"]]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["d", "+", "e", "-", "b", "-", "c"]], ")"]]]], "-", "1"]], ",", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["b", "+", "d", "-", "c", "-", "e"]], ")"]]]]]], "}"]]]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "d"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "+", "d"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "c"]], "+", "d"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "a"]], "+", "e"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "b"]], "+", "e"]], "]"]]], " ", SqrtBox[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "c"]], "+", "e"]], "]"]]]]]], "/;", RowBox[List[RowBox[List["Re", "[", RowBox[List["d", "+", "e", "-", "a", "-", "b", "-", "c"]], "]"]], ">", "0"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|