|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.03.0141.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{1, b, b, b, 2 - b, 2 - b, 2 - b},
{1 + b, 1 + b, 1 + b, 3 - b, 3 - b, 3 - b}, 1] ==
((b^3 (2 - b)^3)/(16 (1 - b)^6)) (8 - 3 Pi^2 (1 - b)^2 Csc[Pi b]^2 +
3 Pi (1 - b) Cot[Pi b] + 2 Pi^3 (1 - b)^3 Cos[Pi b] Csc[Pi b]^3) /; b != 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "b", ",", "b", ",", "b", ",", RowBox[List["2", "-", "b"]], ",", RowBox[List["2", "-", "b"]], ",", RowBox[List["2", "-", "b"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "b"]], ",", RowBox[List["1", "+", "b"]], ",", RowBox[List["1", "+", "b"]], ",", RowBox[List["3", "-", "b"]], ",", RowBox[List["3", "-", "b"]], ",", RowBox[List["3", "-", "b"]]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["b", "3"], SuperscriptBox[RowBox[List["(", RowBox[List["2", "-", "b"]], ")"]], "3"]]], RowBox[List["16", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], "6"]]]], RowBox[List["(", RowBox[List["8", "-", RowBox[List["3", SuperscriptBox["\[Pi]", "2"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], "2"], SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], "2"]]], "+", RowBox[List["3", "\[Pi]", RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]]]], "+", RowBox[List["2", SuperscriptBox["\[Pi]", "3"], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], "3"], RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], "3"]]]]], ")"]]]]]], "/;", RowBox[List["b", "\[NotEqual]", "1"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 7 </mn> </msub> <msub> <mi> F </mi> <mn> 6 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> d </mi> <mo> , </mo> <mi> d </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> d </mi> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["7", TraditionalForm]], SubscriptBox["F", FormBox["6", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["d", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["d", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "d"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "d"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["d", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["d", "+", "1"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", "d"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", "d"]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> d </mi> <mo> ≠ </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <cn type='integer'> 1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <ci> d </ci> <ci> d </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> </list> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> </apply> </apply> <pi /> <apply> <power /> <apply> <csc /> <apply> <times /> <pi /> <ci> d </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <cot /> <apply> <times /> <pi /> <ci> d </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <neq /> <ci> d </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "b_", ",", "b_", ",", "b_", ",", RowBox[List["2", "-", "b_"]], ",", RowBox[List["2", "-", "b_"]], ",", RowBox[List["2", "-", "b_"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "+", "b_"]], ",", RowBox[List["1", "+", "b_"]], ",", RowBox[List["1", "+", "b_"]], ",", RowBox[List["3", "-", "b_"]], ",", RowBox[List["3", "-", "b_"]], ",", RowBox[List["3", "-", "b_"]]]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["2", "-", "b"]], ")"]], "3"]]], ")"]], " ", RowBox[List["(", RowBox[List["8", "-", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], "2"], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], "2"]]], "+", RowBox[List["3", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[Pi]", "3"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], "3"], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "b"]], "]"]], "3"]]]]], ")"]]]], RowBox[List["16", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "b"]], ")"]], "6"]]]], "/;", RowBox[List["b", "\[NotEqual]", "1"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|