| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.31.06.0034.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | HypergeometricPFQ[{}, {Subscript[b, 1], Subscript[b, 2]}, z] \[Proportional] 
  ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]])/(2 Sqrt[3] Pi)) 
   E^(3 z^(1/3)) z^((1/3) (1 - Subscript[b, 1] - Subscript[b, 2])) 
   (1 + (-2 - 3 Subscript[b, 1]^2 + 3 Subscript[b, 2] - 3 Subscript[b, 2]^2 + 
      3 Subscript[b, 1] (1 + Subscript[b, 2]))/(9 z^(1/3)) + 
    (1/(162 z^(2/3))) (4 + 9 Subscript[b, 1]^4 - 12 Subscript[b, 2] + 
      3 Subscript[b, 2]^2 - 12 Subscript[b, 2]^3 + 9 Subscript[b, 2]^4 - 
      6 Subscript[b, 1]^3 (2 + 3 Subscript[b, 2]) + 3 Subscript[b, 1]^2 
       (1 - 3 Subscript[b, 2] + 9 Subscript[b, 2]^2) - 
      3 Subscript[b, 1] (4 - 17 Subscript[b, 2] + 3 Subscript[b, 2]^2 + 
        6 Subscript[b, 2]^3)) + \[Ellipsis]) /; (Abs[z] -> Infinity) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]]]], RowBox[List["2", " ", SqrtBox["3"], " ", "\[Pi]"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", SubsuperscriptBox["b", "1", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]], "-", RowBox[List["3", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"]]], ")"]]]]]], RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["162", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]]], RowBox[List["(", RowBox[List["4", "+", RowBox[List["9", " ", SubsuperscriptBox["b", "1", "4"]]], "-", RowBox[List["12", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "3"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["b", "2", "4"]]], "-", RowBox[List["6", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]]]], ")"]]]], "+", RowBox[List["3", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["b", "2", "2"]]]]], ")"]]]], "-", RowBox[List["3", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["17", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["6", " ", SubsuperscriptBox["b", "2", "3"]]]]], ")"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ∝ </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 3 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 3 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 3 </mn>  </mrow>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 1 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 2 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  </mfrac>  <mo> + </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 162 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mrow>  <mn> 2 </mn>  <mo> / </mo>  <mn> 3 </mn>  </mrow>  </msup>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 1 </mn>  <mn> 4 </mn>  </msubsup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 1 </mn>  <mn> 3 </mn>  </msubsup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 2 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 1 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 6 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 2 </mn>  <mn> 3 </mn>  </msubsup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 2 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 17 </mn>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mn> 4 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> + </mo>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 2 </mn>  <mn> 4 </mn>  </msubsup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 2 </mn>  <mn> 3 </mn>  </msubsup>  </mrow>  <mo> + </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msubsup>  <mi> b </mi>  <mn> 2 </mn>  <mn> 2 </mn>  </msubsup>  </mrow>  <mo> - </mo>  <mrow>  <mn> 12 </mn>  <mo> ⁢ </mo>  <msub>  <mi> b </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> + </mo>  <mn> 4 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mo> … </mo>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mi> z </mi>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <semantics>  <mo> → </mo>  <annotation encoding='Mathematica'> "\[Rule]" </annotation>  </semantics>  <mi> ∞ </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <ci> Proportional </ci>  <apply>  <ci> HypergeometricPFQ </ci>  <list />  <list>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <pi />  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> z </ci>  <apply>  <times />  <cn type='rational'> 1 <sep /> 3 </cn>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -3 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 162 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 2 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 6 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 17 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 3 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 12 </cn>  <apply>  <ci> Subscript </ci>  <ci> b </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <cn type='integer'> 4 </cn>  </apply>  </apply>  <ci> … </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Rule </ci>  <apply>  <abs />  <ci> z </ci>  </apply>  <infinity />  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "3"], " ", RowBox[List["(", RowBox[List["1", "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "2"]], "-", RowBox[List["3", " ", SubsuperscriptBox["bb", "1", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]], "-", RowBox[List["3", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"]]], ")"]]]]]], RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]], "+", FractionBox[RowBox[List["4", "+", RowBox[List["9", " ", SubsuperscriptBox["bb", "1", "4"]]], "-", RowBox[List["12", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "3"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["bb", "2", "4"]]], "-", RowBox[List["6", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]]]], ")"]]]], "+", RowBox[List["3", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["3", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["9", " ", SubsuperscriptBox["bb", "2", "2"]]]]], ")"]]]], "-", RowBox[List["3", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["4", "-", RowBox[List["17", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["3", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["6", " ", SubsuperscriptBox["bb", "2", "3"]]]]], ")"]]]]]], RowBox[List["162", " ", SuperscriptBox["z", RowBox[List["2", "/", "3"]]]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["2", " ", SqrtBox["3"], " ", "\[Pi]"]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | HypergeometricPFQ[{},{},z] |  | HypergeometricPFQ[{},{b},z] |  | HypergeometricPFQ[{a},{},z] |  | HypergeometricPFQ[{a},{b},z] |  | HypergeometricPFQ[{a1},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] |  | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] |  | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] |  |  | 
 | 
 
 | 
 |