|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.06.0036.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{}, {Subscript[b, 1], Subscript[b, 2], Subscript[b, 3]},
z] \[Proportional] ((Gamma[Subscript[b, 1]] Gamma[Subscript[b, 2]]
Gamma[Subscript[b, 3]])/(4 Sqrt[2] Pi^(3/2))) E^(4 z^(1/4))
z^((1/4) (3/2 - Subscript[b, 1] - Subscript[b, 2] - Subscript[b, 3]))
(1 + (-7 - 12 Subscript[b, 1]^2 - 12 Subscript[b, 2]^2 +
8 Subscript[b, 3] - 12 Subscript[b, 3]^2 + 8 Subscript[b, 2]
(1 + Subscript[b, 3]) + 8 Subscript[b, 1] (1 + Subscript[b, 2] +
Subscript[b, 3]))/(32 z^(1/4)) + (1/(2048 Sqrt[z]))
(121 + 144 Subscript[b, 1]^4 + 144 Subscript[b, 2]^4 -
176 Subscript[b, 3] + 8 Subscript[b, 3]^2 - 64 Subscript[b, 3]^3 +
144 Subscript[b, 3]^4 - 64 Subscript[b, 2]^3 (1 + 3 Subscript[b, 3]) -
64 Subscript[b, 1]^3 (1 + 3 Subscript[b, 2] + 3 Subscript[b, 3]) +
8 Subscript[b, 2]^2 (1 - 24 Subscript[b, 3] + 44 Subscript[b, 3]^2) -
16 Subscript[b, 2] (11 - 21 Subscript[b, 3] + 12 Subscript[b, 3]^2 +
12 Subscript[b, 3]^3) + 8 Subscript[b, 1]^2
(1 + 44 Subscript[b, 2]^2 - 24 Subscript[b, 3] +
44 Subscript[b, 3]^2 - 8 Subscript[b, 2] (3 + Subscript[b, 3])) -
16 Subscript[b, 1] (11 + 12 Subscript[b, 2]^3 - 21 Subscript[b, 3] +
12 Subscript[b, 3]^2 + 12 Subscript[b, 3]^3 + 4 Subscript[b, 2]^2
(3 + Subscript[b, 3]) + Subscript[b, 2] (-21 - 40 Subscript[b, 3] +
4 Subscript[b, 3]^2))) + \[Ellipsis]) /; (Abs[z] -> Infinity)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", SubscriptBox["b", "2"], ",", SubscriptBox["b", "3"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["b", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["b", "3"], "]"]]]], RowBox[List["4", " ", SqrtBox["2"], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", SubscriptBox["b", "1"], "-", SubscriptBox["b", "2"], "-", SubscriptBox["b", "3"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "7"]], "-", RowBox[List["12", " ", SubsuperscriptBox["b", "1", "2"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["b", "3"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["b", "3", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "3"]]], ")"]]]], "+", RowBox[List["8", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["b", "2"], "+", SubscriptBox["b", "3"]]], ")"]]]]]], RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List["2048", " ", SqrtBox["z"]]]], RowBox[List["(", RowBox[List["121", "+", RowBox[List["144", " ", SubsuperscriptBox["b", "1", "4"]]], "+", RowBox[List["144", " ", SubsuperscriptBox["b", "2", "4"]]], "-", RowBox[List["176", " ", SubscriptBox["b", "3"]]], "+", RowBox[List["8", " ", SubsuperscriptBox["b", "3", "2"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "3", "3"]]], "+", RowBox[List["144", " ", SubsuperscriptBox["b", "3", "4"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "2", "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["3", " ", SubscriptBox["b", "3"]]]]], ")"]]]], "-", RowBox[List["64", " ", SubsuperscriptBox["b", "1", "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["3", " ", SubscriptBox["b", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["b", "3"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["b", "2", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["24", " ", SubscriptBox["b", "3"]]], "+", RowBox[List["44", " ", SubsuperscriptBox["b", "3", "2"]]]]], ")"]]]], "-", RowBox[List["16", " ", SubscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["21", " ", SubscriptBox["b", "3"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "3", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "3", "3"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["b", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["44", " ", SubsuperscriptBox["b", "2", "2"]]], "-", RowBox[List["24", " ", SubscriptBox["b", "3"]]], "+", RowBox[List["44", " ", SubsuperscriptBox["b", "3", "2"]]], "-", RowBox[List["8", " ", SubscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b", "3"]]], ")"]]]]]], ")"]]]], "-", RowBox[List["16", " ", SubscriptBox["b", "1"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["12", " ", SubsuperscriptBox["b", "2", "3"]]], "-", RowBox[List["21", " ", SubscriptBox["b", "3"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "3", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["b", "3", "3"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "2", "2"], " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["b", "3"]]], ")"]]]], "+", RowBox[List[SubscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "-", RowBox[List["40", " ", SubscriptBox["b", "3"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["b", "3", "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", "\[Ellipsis]"]], ")"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox["F", FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "3"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQ] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mfrac> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> - </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mfrac> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 12 </mn> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> + </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 7 </mn> </mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mroot> <mi> z </mi> <mn> 4 </mn> </mroot> </mrow> </mfrac> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2048 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 44 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 44 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 1 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mn> 3 </mn> </msub> <mo> + </mo> <mn> 3 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 40 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mn> 21 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 144 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 4 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 176 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> - </mo> <mrow> <mn> 64 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 3 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 2 </mn> <mn> 2 </mn> </msubsup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 44 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 16 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 2 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 3 </mn> </msubsup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msubsup> <mi> b </mi> <mn> 3 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <msub> <mi> b </mi> <mn> 3 </mn> </msub> </mrow> <mo> + </mo> <mn> 11 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 121 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mo> … </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mi> ∞ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list /> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -7 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2048 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 44 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 44 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 40 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> -21 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 11 </cn> </apply> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 144 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 176 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 64 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 44 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 16 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <cn type='integer'> 11 </cn> </apply> </apply> </apply> <cn type='integer'> 121 </cn> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", SubscriptBox["b_", "2"], ",", SubscriptBox["b_", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", SubscriptBox["bb", "1"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "2"], "]"]], " ", RowBox[List["Gamma", "[", SubscriptBox["bb", "3"], "]"]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["4", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], " ", SuperscriptBox["z", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List[FractionBox["3", "2"], "-", SubscriptBox["bb", "1"], "-", SubscriptBox["bb", "2"], "-", SubscriptBox["bb", "3"]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "7"]], "-", RowBox[List["12", " ", SubsuperscriptBox["bb", "1", "2"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "3"]]], "-", RowBox[List["12", " ", SubsuperscriptBox["bb", "3", "2"]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "2"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "3"]]], ")"]]]], "+", RowBox[List["8", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["1", "+", SubscriptBox["bb", "2"], "+", SubscriptBox["bb", "3"]]], ")"]]]]]], RowBox[List["32", " ", SuperscriptBox["z", RowBox[List["1", "/", "4"]]]]]], "+", FractionBox[RowBox[List["121", "+", RowBox[List["144", " ", SubsuperscriptBox["bb", "1", "4"]]], "+", RowBox[List["144", " ", SubsuperscriptBox["bb", "2", "4"]]], "-", RowBox[List["176", " ", SubscriptBox["bb", "3"]]], "+", RowBox[List["8", " ", SubsuperscriptBox["bb", "3", "2"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "3", "3"]]], "+", RowBox[List["144", " ", SubsuperscriptBox["bb", "3", "4"]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "2", "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["3", " ", SubscriptBox["bb", "3"]]]]], ")"]]]], "-", RowBox[List["64", " ", SubsuperscriptBox["bb", "1", "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["3", " ", SubscriptBox["bb", "2"]]], "+", RowBox[List["3", " ", SubscriptBox["bb", "3"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["bb", "2", "2"], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["24", " ", SubscriptBox["bb", "3"]]], "+", RowBox[List["44", " ", SubsuperscriptBox["bb", "3", "2"]]]]], ")"]]]], "-", RowBox[List["16", " ", SubscriptBox["bb", "2"], " ", RowBox[List["(", RowBox[List["11", "-", RowBox[List["21", " ", SubscriptBox["bb", "3"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "3", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "3", "3"]]]]], ")"]]]], "+", RowBox[List["8", " ", SubsuperscriptBox["bb", "1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["44", " ", SubsuperscriptBox["bb", "2", "2"]]], "-", RowBox[List["24", " ", SubscriptBox["bb", "3"]]], "+", RowBox[List["44", " ", SubsuperscriptBox["bb", "3", "2"]]], "-", RowBox[List["8", " ", SubscriptBox["bb", "2"], " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["bb", "3"]]], ")"]]]]]], ")"]]]], "-", RowBox[List["16", " ", SubscriptBox["bb", "1"], " ", RowBox[List["(", RowBox[List["11", "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "2", "3"]]], "-", RowBox[List["21", " ", SubscriptBox["bb", "3"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "3", "2"]]], "+", RowBox[List["12", " ", SubsuperscriptBox["bb", "3", "3"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "2", "2"], " ", RowBox[List["(", RowBox[List["3", "+", SubscriptBox["bb", "3"]]], ")"]]]], "+", RowBox[List[SubscriptBox["bb", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "21"]], "-", RowBox[List["40", " ", SubscriptBox["bb", "3"]]], "+", RowBox[List["4", " ", SubsuperscriptBox["bb", "3", "2"]]]]], ")"]]]]]], ")"]]]]]], RowBox[List["2048", " ", SqrtBox["z"]]]], "+", "\[Ellipsis]"]], ")"]]]], RowBox[List["4", " ", SqrtBox["2"], " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]]], "/;", RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|