Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > Series representations > Main terms of asymptotic expansions





http://functions.wolfram.com/07.31.06.0040.01









  


  










Input Form





HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] \[Proportional] (Product[Gamma[Subscript[b, j]], {j, 1, q}]/Product[Gamma[Subscript[a, j]], {j, 1, p}]) (Sum[Residue[(Gamma[s] Product[Gamma[Subscript[a, j] - s], {j, 1, p}])/ Product[Gamma[Subscript[b, j] - s], {j, 1, q}]/(-z)^s, {s, Subscript[a, k]}] (1 + O[1/z]), {k, 1, p}] + KroneckerDelta[q, p + 1] Subscript[d, 1] (-z)^\[Chi] Cos[2 Sqrt[-z] + \[Chi] Pi] (1 + O[1/Sqrt[-z]]) + (UnitStep[q - p] - KroneckerDelta[q, p + 1]) Subscript[d, 2] z^\[Chi] Exp[\[Beta] z^(1/\[Beta])] (1 + O[1/z^(1/\[Beta])])) /; (Abs[z] -> Infinity) && \[Beta] == q - p + 1 && \[Chi] == (1/\[Beta]) ((\[Beta] - 1)/2 + Sum[Subscript[a, k], {k, 1, p}] - Sum[Subscript[b, k], {k, 1, q}]) && 2 Subscript[d, 2] == Subscript[d, 1] == (2 (2 Pi)^((1 - \[Beta])/2))/Sqrt[\[Beta]]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["Gamma", "[", SubscriptBox["b", "j"], "]"]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Gamma", "[", SubscriptBox["a", "j"], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "p"], RowBox[List[RowBox[List["Residue", "[", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", "s", "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "j"], "-", "s"]], "]"]], " "]]]], RowBox[List[" ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "j"], "-", "s"]], "]"]]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], RowBox[List["-", "s"]]]]], ",", RowBox[List["{", RowBox[List["s", ",", SubscriptBox["a", "k"]]], "}"]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", "z"], "]"]]]], ")"]]]]]], "+", RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]], SubscriptBox["d", "1"], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "\[Chi]"], RowBox[List["Cos", "[", RowBox[List[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], "+", RowBox[List["\[Chi]", " ", "\[Pi]"]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SqrtBox[RowBox[List["-", "z"]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List["q", "-", "p"]], "]"]], "-", RowBox[List["KroneckerDelta", "[", RowBox[List["q", ",", RowBox[List["p", "+", "1"]]]], "]"]]]], ")"]], SubscriptBox["d", "2"], " ", SuperscriptBox["z", "\[Chi]"], " ", RowBox[List["Exp", "[", RowBox[List["\[Beta]", " ", SuperscriptBox["z", FractionBox["1", "\[Beta]"]]]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", FractionBox["1", SuperscriptBox["z", RowBox[List["1", "/", "\[Beta]"]]]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", "\[InvisibleSpace]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "\[Rule]", "\[Infinity]"]], ")"]], "\[And]", RowBox[List["\[Beta]", "\[Equal]", RowBox[List["q", "-", "p", "+", "1"]]]], "\[And]", RowBox[List["\[Chi]", "\[Equal]", RowBox[List[FractionBox["1", "\[Beta]"], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["\[Beta]", "-", "1"]], "2"], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "p"], SubscriptBox["a", "k"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "q"], SubscriptBox["b", "k"]]]]], ")"]]]]]], "\[And]", RowBox[List[RowBox[List["2", SubscriptBox["d", "2"]]], "\[Equal]", SubscriptBox["d", "1"], "\[Equal]", FractionBox[RowBox[List["2", SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], FractionBox[RowBox[List["1", "-", "\[Beta]"]], "2"]]]], SqrtBox["\[Beta]"]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;p&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;q&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], &quot;;&quot;, TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mrow> <msub> <mi> res </mi> <mi> s </mi> </msub> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> s </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> s </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <mi> z </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> q </mi> <mo> , </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> <mo> &#8290; </mo> <msub> <mi> d </mi> <mn> 1 </mn> </msub> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#967; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#967; </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> &#952; </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msub> <semantics> <mi> &#948; </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> q </mi> <mo> , </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msub> <mi> d </mi> <mn> 2 </mn> </msub> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#967; </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> &#946; </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> &#946; </mi> </mrow> </msup> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mn> 1 </mn> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> / </mo> <mi> &#946; </mi> </mrow> </msup> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mi> z </mi> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <semantics> <mo> &#8594; </mo> <annotation encoding='Mathematica'> &quot;\[Rule]&quot; </annotation> </semantics> <mi> &#8734; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#946; </mi> <mo> &#10869; </mo> <mrow> <mi> q </mi> <mo> - </mo> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#967; </mi> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> &#946; </mi> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> &#946; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> k </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msub> <mi> d </mi> <mn> 2 </mn> </msub> </mrow> <mo> &#10869; </mo> <msub> <mi> d </mi> <mn> 1 </mn> </msub> <mo> &#10869; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mo> ) </mo> </mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#946; </mi> </mrow> <mn> 2 </mn> </mfrac> </msup> </mrow> <msqrt> <mi> &#946; </mi> </msqrt> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> p </ci> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <ci> &#8230; </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <times /> <apply> <apply> <ci> Subscript </ci> <ci> res </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <ci> s </ci> </apply> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> KroneckerDelta </ci> <ci> q </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> &#967; </ci> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <pi /> <ci> &#967; </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> UnitStep </ci> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> KroneckerDelta </ci> <ci> q </ci> <apply> <plus /> <ci> p </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <ci> &#967; </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> &#946; </ci> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> &#946; </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> z </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> &#946; </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <apply> <abs /> <ci> z </ci> </apply> <infinity /> </apply> <apply> <eq /> <ci> &#946; </ci> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <eq /> <ci> &#967; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> &#946; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> &#946; </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <eq /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> Subscript </ci> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#946; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <ci> &#946; </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2001-10-29