html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 HypergeometricPFQ

 http://functions.wolfram.com/07.31.06.0042.01

 Input Form

 HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, q + 1]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] \[Proportional] c (1 + O[z - 1]) + d (1 - z)^Subscript[\[Psi], q] (1 + O[z - 1]) /; (z -> 1) && Subscript[\[Psi], q] == Sum[Subscript[b, j], {j, 1, q}] - Sum[Subscript[a, j], {j, 1, q + 1}] && c == HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, q + 1]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, 1] && d == Gamma[-Subscript[\[Psi], q]] (Product[Gamma[Subscript[b, k]], {k, 1, q}]/Product[Gamma[Subscript[a, k]], {k, 1, q + 1}]) && !Element[Subscript[\[Psi], q], Integers]

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List["c", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], "+", RowBox[List["d", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "q"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "+", "1"]]], SubscriptBox["a", "j"]]]]]]], "\[And]", RowBox[List["c", "\[Equal]", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "1"]], "]"]]]], "\[And]", RowBox[List["d", "\[Equal]", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["-", SubscriptBox["\[Psi]", "q"]]], "]"]], FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "q"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["q", "+", "1"]]], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[SubscriptBox["\[Psi]", "q"], ",", "Integers"]], "]"]], "]"]]]]]]]]

 MathML Form

 q + 1 F q ( a 1 , , a q + 1 ; b 1 , , b q ; z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] c ( 1 + O ( z - 1 ) ) + d ( 1 - z ) ψ q ( 1 + O ( z - 1 ) ) /; ( z "\[Rule]" 1 ) ψ q j = 1 q b j - j = 1 q + 1 a j c q + 1 F q ( a 1 , , a q + 1 ; b 1 , , b q ; 1 ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] d Γ ( - ψ q ) k = 1 q Γ ( b k ) k = 1 q + 1 Γ ( a k ) ψ q TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] Condition Proportional HypergeometricPFQ Subscript a 1 Subscript a q 1 Subscript b 1 Subscript b q z c 1 O z -1 d 1 -1 z Subscript ψ q 1 O z -1 Rule z 1 Subscript ψ q j 1 q Subscript b j -1 j 1 q 1 Subscript a j c HypergeometricPFQ Subscript a 1 Subscript a q 1 Subscript b 1 Subscript b q 1 d Gamma -1 Subscript ψ q k 1 q Gamma Subscript b k k 1 q 1 Gamma Subscript a k -1 Subscript ψ q [/itex]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29