|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.16.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]},
{Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, c z]
HypergeometricPFQ[{Subscript[\[Alpha], 1], \[Ellipsis],
Subscript[\[Alpha], r]}, {Subscript[\[Beta], 1], \[Ellipsis],
Subscript[\[Beta], s]}, d z] ==
Sum[(Product[Pochhammer[Subscript[a, j], m] c^m, {j, 1, p}]/
Product[Pochhammer[Subscript[b, j], m] m!, {j, 1, q}])
(Product[Pochhammer[Subscript[\[Alpha], j], k - m] d^(k - m), {j, 1, r}]/
Product[Pochhammer[Subscript[\[Beta], j], k - m] (k - m)!, {j, 1, s}])
z^k, {k, 0, Infinity}, {m, 0, k}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", RowBox[List["c", " ", "z"]]]], "]"]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Alpha]", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["\[Alpha]", "r"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["\[Beta]", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["\[Beta]", "s"]]], "}"]], ",", RowBox[List["d", " ", "z"]]]], "]"]]]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "0"]], "k"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "m"]], "]"]], " ", SuperscriptBox["c", "m"]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], " ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["b", "j"], ",", "m"]], "]"]], " ", RowBox[List["m", "!"]]]]]]], FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "r"], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["\[Alpha]", "j"], ",", RowBox[List["k", "-", "m"]]]], "]"]], " ", SuperscriptBox["d", RowBox[List["k", "-", "m"]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "s"], " ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["\[Beta]", "j"], ",", RowBox[List["k", "-", "m"]]]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "m"]], ")"]], "!"]]]]]]], SuperscriptBox["z", "k"]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> ; </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", "p"], ";", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", "q"], ";", RowBox[List["c", " ", "z"]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> r </mi> </msub> <msub> <mi> F </mi> <mi> s </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> α </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> α </mi> <mi> r </mi> </msub> <mo> ; </mo> <msub> <mi> β </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> β </mi> <mi> s </mi> </msub> <mo> ; </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["r", TraditionalForm]], SubscriptBox["F", FormBox["s", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["\[Alpha]", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["\[Alpha]", "r"], ";", SubscriptBox["\[Beta]", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["\[Beta]", "s"], ";", RowBox[List["d", " ", "z"]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> m </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "m"], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> r </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> α </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["\[Alpha]", "j"], ")"]], RowBox[List["k", "-", "m"]]], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> c </mi> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> m </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["b", "j"], ")"]], "m"], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> s </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> β </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["\[Beta]", "j"], ")"]], RowBox[List["k", "-", "m"]]], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> ; </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox["F", FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", "p"], ";", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", "q"], ";", RowBox[List["c", " ", "z"]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> r </mi> </msub> <msub> <mi> F </mi> <mi> s </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> α </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> α </mi> <mi> r </mi> </msub> <mo> ; </mo> <msub> <mi> β </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> β </mi> <mi> s </mi> </msub> <mo> ; </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["r", TraditionalForm]], SubscriptBox["F", FormBox["s", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["\[Alpha]", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["\[Alpha]", "r"], ";", SubscriptBox["\[Beta]", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["\[Beta]", "s"], ";", RowBox[List["d", " ", "z"]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> m </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "m"], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> r </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> α </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["\[Alpha]", "j"], ")"]], RowBox[List["k", "-", "m"]]], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> c </mi> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> d </mi> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> m </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["b", "j"], ")"]], "m"], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> s </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> β </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["\[Beta]", "j"], ")"]], RowBox[List["k", "-", "m"]]], Pochhammer] </annotation> </semantics> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|