Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQ[{a1,...,ap},{b1,...,bq},z] > Identities > Functional identities > Division on even and odd parts and generalization





http://functions.wolfram.com/07.31.17.0020.01









  


  










Input Form





HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] == SuperPlus[A][z] + SuperMinus[A][z] /; SuperPlus[A][z] == HypergeometricPFQ[{Subscript[a, 1]/2, \[Ellipsis], Subscript[a, p]/2, (Subscript[a, 1] + 1)/2, \[Ellipsis], (Subscript[a, p] + 1)/2}, {1/2, Subscript[b, 1]/2, \[Ellipsis], Subscript[b, q]/2, (Subscript[b, 1] + 1)/2, \[Ellipsis], (Subscript[b, q] + 1)/2}, 4^(p - q - 1) z^2] && SuperMinus[A][z] == ((z Product[Subscript[a, j], {j, 1, p}])/ Product[Subscript[b, j], {j, 1, q}]) HypergeometricPFQ[ {(Subscript[a, 1] + 1)/2, \[Ellipsis], (Subscript[a, p] + 1)/2, (Subscript[a, 1] + 2)/2, \[Ellipsis], (Subscript[a, p] + 2)/2}, {3/2, (Subscript[b, 1] + 1)/2, \[Ellipsis], (Subscript[b, q] + 1)/2, (Subscript[b, 1] + 2)/2, \[Ellipsis], (Subscript[b, q] + 2)/2}, 4^(p - q - 1) z^2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["A", "+"], "[", "z", "]"]], "+", RowBox[List[SuperscriptBox["A", "-"], "[", "z", "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["A", "+"], "[", "z", "]"]], "\[Equal]", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[SubscriptBox["a", "1"], "2"], ",", "\[Ellipsis]", ",", FractionBox[SubscriptBox["a", "p"], "2"], ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "1"]], "2"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "1"]], "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox[SubscriptBox["b", "1"], "2"], ",", "\[Ellipsis]", ",", FractionBox[SubscriptBox["b", "q"], "2"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "1"]], "2"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "1"]], "2"]]], "}"]], ",", RowBox[List[SuperscriptBox["4", RowBox[List["p", "-", "q", "-", "1"]]], SuperscriptBox["z", "2"]]]]], "]"]]]], "\[And]", RowBox[List[RowBox[List[SuperscriptBox["A", "-"], "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["z", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "1"]], "2"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "1"]], "2"], ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "2"]], "2"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "2"]], "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["3", "2"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "1"]], "2"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "1"]], "2"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "2"]], "2"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "2"]], "2"]]], "}"]], ",", RowBox[List[SuperscriptBox["4", RowBox[List["p", "-", "q", "-", "1"]]], SuperscriptBox["z", "2"]]]]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> ; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;p&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;q&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;;&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;;&quot;, &quot;z&quot;]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mi> A </mi> <mo> + </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> A </mi> <mo> - </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <msup> <mi> A </mi> <mo> + </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <msub> <mi> a </mi> <mi> p </mi> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <msub> <mi> b </mi> <mi> q </mi> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;2&quot;, &quot;p&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, RowBox[List[&quot;2&quot;, FormBox[RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;;&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;,&quot;, FractionBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;;&quot;, RowBox[List[SuperscriptBox[&quot;4&quot;, RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;q&quot;, &quot;-&quot;, &quot;1&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msup> <mi> A </mi> <mo> - </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;2&quot;, &quot;p&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, RowBox[List[&quot;2&quot;, FormBox[RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;;&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;;&quot;, RowBox[List[SuperscriptBox[&quot;4&quot;, RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;q&quot;, &quot;-&quot;, &quot;1&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> ; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;p&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;q&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;;&quot;, SubscriptBox[&quot;b&quot;, &quot;1&quot;]]], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;;&quot;, &quot;z&quot;]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mi> A </mi> <mo> + </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <mi> A </mi> <mo> - </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <msup> <mi> A </mi> <mo> + </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <msub> <mi> a </mi> <mi> p </mi> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <msub> <mi> b </mi> <mi> q </mi> </msub> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;2&quot;, &quot;p&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, RowBox[List[&quot;2&quot;, FormBox[RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;;&quot;, FractionBox[&quot;1&quot;, &quot;2&quot;]]], &quot;,&quot;, FractionBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;;&quot;, RowBox[List[SuperscriptBox[&quot;4&quot;, RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;q&quot;, &quot;-&quot;, &quot;1&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> <mo> &#8743; </mo> <mrow> <mrow> <msup> <mi> A </mi> <mo> - </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> </mfrac> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> p </mi> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mn> 4 </mn> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[RowBox[List[&quot;2&quot;, &quot;p&quot;]], TraditionalForm]], SubscriptBox[&quot;F&quot;, RowBox[List[&quot;2&quot;, FormBox[RowBox[List[&quot;q&quot;, &quot;+&quot;, &quot;1&quot;]], TraditionalForm]]]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;1&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;a&quot;, &quot;p&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;;&quot;, FractionBox[&quot;3&quot;, &quot;2&quot;]]], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;+&quot;, &quot;1&quot;]], &quot;2&quot;], &quot;,&quot;, FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;, &quot;,&quot;, RowBox[List[FractionBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;q&quot;], &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], &quot;;&quot;, RowBox[List[SuperscriptBox[&quot;4&quot;, RowBox[List[&quot;p&quot;, &quot;-&quot;, &quot;q&quot;, &quot;-&quot;, &quot;1&quot;]]], SuperscriptBox[&quot;z&quot;, &quot;2&quot;]]]]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Date Added to functions.wolfram.com (modification date)





2001-10-29