|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.20.0009.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[{n, 0, \[Ellipsis], 0}, {0, \[Ellipsis], 0}, 0][HypergeometricPFQ][
{Subscript[a, 1], \[Ellipsis], Subscript[a, p]},
{Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] ==
Sum[(Product[Pochhammer[Subscript[a, j], k], {j, 2, p}]/
(k! Product[Pochhammer[Subscript[b, j], k], {j, 1, q}]))
D[Pochhammer[Subscript[a, 1], k], {Subscript[a, 1], n}] z^k,
{k, 0, Infinity}] /; (Element[n, Integers] && n > 0 && q == p - 1 &&
Abs[z] < 1) || q >= p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List[RowBox[List["{", RowBox[List["n", ",", "0", ",", "\[Ellipsis]", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "\[Ellipsis]", ",", "0"]], "}"]], ",", "0"]], "]"]], "[", "HypergeometricPFQ", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "2"]], "p"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], " ", RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["b", "j"], ",", "k"]], "]"]]]]]]], RowBox[List["D", "[", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "1"], ",", "k"]], "]"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "n"]], "}"]]]], "]"]], SuperscriptBox["z", "k"]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]], "\[And]", RowBox[List["q", "\[Equal]", RowBox[List["p", "-", "1"]]]], "\[And]", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]], "\[Or]", RowBox[List["q", "\[GreaterEqual]", "p"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> p </mi> </msub> <msubsup> <mi> F </mi> <mi> q </mi> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> p </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["b", "j"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "1"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mi> n </mi> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox["\[DoubleStruckCapitalN]", "+"], Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ⩵ </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∨ </mo> <mrow> <mi> q </mi> <mo> ≥ </mo> <mi> p </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <msub> <mi> p </mi> </msub> <msubsup> <mi> F </mi> <mi> q </mi> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> p </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> b </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["b", "j"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "1"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mo> ∂ </mo> <msubsup> <mi> a </mi> <mn> 1 </mn> <mi> n </mi> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> <annotation encoding='Mathematica'> TagBox[SuperscriptBox["\[DoubleStruckCapitalN]", "+"], Function[Integers]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ⩵ </mo> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ∨ </mo> <mrow> <mi> q </mi> <mo> ≥ </mo> <mi> p </mi> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["HypergeometricPFQ", TagBox[RowBox[List["(", RowBox[List[RowBox[List["{", RowBox[List["n", ",", "0", ",", "\[Ellipsis]_", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "\[Ellipsis]_", ",", "0"]], "}"]], ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "2"]], "p"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "n"]], "}"]]]]], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["aa", "1"], ",", "k"]], "]"]]]], " ", SuperscriptBox["z", "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "q"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["b", "j"], ",", "k"]], "]"]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]], "&&", RowBox[List["q", "\[Equal]", RowBox[List["p", "-", "1"]]]], "&&", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "<", "1"]]]], ")"]], "||", RowBox[List["q", "\[GreaterEqual]", "p"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|