|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.31.21.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[t^(\[Alpha] - 1) HypergeometricPFQ[{Subscript[a, 1], \[Ellipsis],
Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, -t],
{t, 0, Infinity}] == (Product[Gamma[Subscript[b, k]], {k, 1, q}]/
Product[Gamma[Subscript[a, k]], {k, 1, p}])
((Gamma[\[Alpha]] Product[Gamma[Subscript[a, k] - \[Alpha]], {k, 1, p}])/
Product[Gamma[Subscript[b, k] - \[Alpha]], {k, 1, q}]) /;
(0 < Re[\[Alpha]] < Min[Re[Subscript[a, 1]], \[Ellipsis],
Re[Subscript[a, p]]] && p - 1 <= q <= p) ||
(0 < Re[\[Alpha]] < Min[Re[Subscript[a, 1]], \[Ellipsis],
Re[Subscript[a, p]], 1/4 - (1/2) Re[Sum[Subscript[a, j], {j, 1, p}] -
Sum[Subscript[b, k], {k, 1, q}]]] && q == p + 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "0", "\[Infinity]"], RowBox[List[SuperscriptBox["t", RowBox[List["\[Alpha]", "-", "1"]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", RowBox[List["-", "t"]]]], "]"]], RowBox[List["\[DifferentialD]", "t"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "q"], RowBox[List["Gamma", "[", SubscriptBox["b", "k"], "]"]]]], RowBox[List[" ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "p"], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]], FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Gamma", "[", "\[Alpha]", "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "p"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "k"], "-", "\[Alpha]"]], "]"]]]]]]]], RowBox[List[" ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "q"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "-", "\[Alpha]"]], "]"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["0", "<", RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "p"], "]"]]]], "]"]]]], "\[And]", RowBox[List[RowBox[List["p", "-", "1"]], "\[LessEqual]", "q", "\[LessEqual]", "p"]]]], ")"]], "\[Or]", RowBox[List["(", RowBox[List[RowBox[List["0", "<", RowBox[List["Re", "[", "\[Alpha]", "]"]], "<", RowBox[List["Min", "[", RowBox[List[RowBox[List["Re", "[", SubscriptBox["a", "1"], "]"]], ",", "\[Ellipsis]", ",", RowBox[List["Re", "[", SubscriptBox["a", "p"], "]"]], ",", RowBox[List[FractionBox["1", "4"], "-", RowBox[List[FractionBox["1", "2"], RowBox[List["Re", "[", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["a", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "q"], SubscriptBox["b", "k"]]]]], "]"]]]]]]]], "]"]]]], "\[And]", RowBox[List["q", "\[Equal]", RowBox[List["p", "+", "1"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <mo> ∫ </mo> <mn> 0 </mn> <mi> ∞ </mi> </msubsup> <mrow> <msup> <mi> t </mi> <mrow> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mi> F </mi> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> , </mo> <semantics> <mo> … </mo> <annotation encoding='Mathematica'> TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> <mo> , </mo> <mrow> <semantics> <msub> <mi> b </mi> <mi> q </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <mo> - </mo> <mi> t </mi> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["-", "t"]], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> - </mo> <mi> α </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> - </mo> <mi> α </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mn> 0 </mn> <mo> < </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> <mo> < </mo> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ≤ </mo> <mi> q </mi> <mo> ≤ </mo> <mi> p </mi> </mrow> </mrow> <mo> ∨ </mo> <mrow> <mrow> <mn> 0 </mn> <mo> < </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> <mo> < </mo> <mrow> <mi> min </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ) </mo> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mi> Re </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> k </mi> </msub> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ⩵ </mo> <mrow> <mi> p </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> ∫ </ms> <ms> 0 </ms> <ms> ∞ </ms> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> t </ms> <apply> <ci> RowBox </ci> <list> <ms> α </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms>  </ms> </apply> <ms> p </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> F </ms> <apply> <ci> FormBox </ci> <ms> q </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> ⁡ </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> … </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> p </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> … </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> q </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> t </ms> </list> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ⅆ </ms> <ms> t </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ⩵ </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> q </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> k </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <ms> α </ms> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> p </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> <ms> - </ms> <ms> α </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> p </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> k </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∏ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> q </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> k </ms> </apply> <ms> - </ms> <ms> α </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> < </ms> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> α </ms> <ms> ) </ms> </list> </apply> <ms> < </ms> <apply> <ci> RowBox </ci> <list> <ms> min </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> , </ms> <ms> … </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> p </ms> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> p </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ≤ </ms> <ms> q </ms> <ms> ≤ </ms> <ms> p </ms> </list> </apply> </list> </apply> <ms> ∨ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 0 </ms> <ms> < </ms> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <ms> α </ms> <ms> ) </ms> </list> </apply> <ms> < </ms> <apply> <ci> RowBox </ci> <list> <ms> min </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ms> ) </ms> </list> </apply> <ms> , </ms> <ms> … </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> p </ms> </apply> <ms> ) </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 4 </ms> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> 1 </ms> <ms> 2 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> Re </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> j </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> p </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> j </ms> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> UnderoverscriptBox </ci> <ms> ∑ </ms> <apply> <ci> RowBox </ci> <list> <ms> k </ms> <ms> = </ms> <ms> 1 </ms> </list> </apply> <ms> q </ms> </apply> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> k </ms> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ∧ </ms> <apply> <ci> RowBox </ci> <list> <ms> q </ms> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <ms> p </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQ[{},{},z] | HypergeometricPFQ[{},{b},z] | HypergeometricPFQ[{a},{},z] | HypergeometricPFQ[{a},{b},z] | HypergeometricPFQ[{a1},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1},z] | HypergeometricPFQ[{a1,a2},{b1,b2},z] | HypergeometricPFQ[{a1,a2},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3},{b1,b2},z] | HypergeometricPFQ[{a1,a2,a3,a4},{b1,b2,b3},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5},{b1,b2,b3,b4},z] | HypergeometricPFQ[{a1,a2,a3,a4,a5,a6},{b1,b2,b3,b4,b5},z] | |
|
|
|