  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.32.03.0031.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQRegularized[{-n, Subscript[a, 2], \[Ellipsis], 
    Subscript[a, q + 1]}, {Subscript[a, 2] - Subscript[n, 2], \[Ellipsis], 
    Subscript[a, q + 1] - Subscript[n, q + 1]}, 1] == 
  (-1)^\[Sigma] (n!/Product[Gamma[Subscript[a, j]], {j, 2, q + 1}]) 
   ((1/2) Sum[Subscript[n, k] (Subscript[n, k] - 1) 
       Sum[(Subscript[a, j] - Subscript[a, j + 1] + Subscript[n, j + 1]) 
         (Sum[Subscript[a, j] - Subscript[a, j + 1] + Subscript[n, j + 1], 
           {j, 1, k - 1}] - 1), {j, 1, k - 1}], {k, 2, q + 1}] + 
    Sum[Subscript[n, k] Sum[(Subscript[a, j] - Subscript[a, j + 1] + 
         Subscript[n, j + 1]) Sum[Subscript[n, l] 
          (Sum[Subscript[a, j] - Subscript[a, j + 1] + Subscript[n, j + 1], 
            {j, 1, l - 1}] - 1), {l, k + 1, q + 1}], {j, 1, k - 1}], 
     {k, 2, q + 1}]) /; \[Sigma] == n + 2 && Subscript[a, 1] == -n && 
  Element[Subscript[n, j], Integers] && Subscript[n, j] > 0 && 
  2 <= j <= q + 1 && \[Sigma] == Sum[Subscript[n, j], {j, 2, q + 1}] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["a", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["n", "2"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "-", SubscriptBox["n", RowBox[List["q", "+", "1"]]]]]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["\[Sigma]", " "]]], FractionBox[RowBox[List["n", "!"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "2"]], RowBox[List["q", "+", "1"]]], RowBox[List["Gamma", "[", SubscriptBox["a", "j"], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], RowBox[List["q", "+", "1"]]], RowBox[List[SubscriptBox["n", "k"], RowBox[List["(", RowBox[List[SubscriptBox["n", "k"], "-", "1"]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]]]], "-", "1"]], ")"]]]]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], RowBox[List["q", "+", "1"]]], RowBox[List[SubscriptBox["n", "k"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", RowBox[List["k", "+", "1"]]]], RowBox[List["q", "+", "1"]]], RowBox[List[SubscriptBox["n", "l"], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["l", "-", "1"]]], RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]]]], "-", "1"]], ")"]]]]]]]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["\[Sigma]", "\[Equal]", RowBox[List["n", "+", "2"]]]], "\[And]", RowBox[List[SubscriptBox["a", "1"], "\[Equal]", RowBox[List["-", "n"]]]], "\[And]", RowBox[List[SubscriptBox["n", "j"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["n", "j"], ">", "0"]], "\[And]", RowBox[List["2", "\[LessEqual]", "j", "\[LessEqual]", RowBox[List["q", "+", "1"]]]], "\[And]", RowBox[List["\[Sigma]", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "2"]], RowBox[List["q", "+", "1"]]], SubscriptBox["n", "j"]]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mi> q </mi>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  <mo> , </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> ; </mo>  <mrow>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> - </mo>  <msub>  <mi> n </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <mrow>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> - </mo>  <msub>  <mi> n </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  </mrow>  <mo> ; </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", "n"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", RowBox[List[TagBox[SubscriptBox["a", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox["a", "2"], "-", SubscriptBox["n", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List[SubscriptBox["a", RowBox[List["q", "+", "1"]]], "-", SubscriptBox["n", RowBox[List["q", "+", "1"]]]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> σ </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> n </mi>  <mo> ! </mo>  </mrow>  </mrow>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <msub>  <mi> n </mi>  <mi> k </mi>  </msub>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> n </mi>  <mi> k </mi>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> + </mo>  <msub>  <mi> n </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> + </mo>  <msub>  <mi> n </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <msub>  <mi> n </mi>  <mi> k </mi>  </msub>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> + </mo>  <msub>  <mi> n </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> l </mi>  <mo> = </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <msub>  <mi> n </mi>  <mi> l </mi>  </msub>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> l </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  <mo> - </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <mo> + </mo>  <msub>  <mi> n </mi>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> σ </mi>  <mo> ⩵ </mo>  <mrow>  <mi> n </mi>  <mo> + </mo>  <mn> 2 </mn>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> ⩵ </mo>  <mrow>  <mo> - </mo>  <mi> n </mi>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> n </mi>  <mi> j </mi>  </msub>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mn> 2 </mn>  <mo> ≤ </mo>  <mi> j </mi>  <mo> ≤ </mo>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> σ </mi>  <mo> ⩵ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 2 </mn>  </mrow>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <msub>  <mi> n </mi>  <mi> j </mi>  </msub>  </mrow>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQ </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> … </ci>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> σ </ci>  </apply>  <apply>  <factorial />  <ci> n </ci>  </apply>  <apply>  <power />  <apply>  <product />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 2 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> q </ci>  <cn type='integer'> 1 </cn>  </apply>  </uplimit>  <apply>  <ci> Gamma </ci>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> j </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 2 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> q </ci>  <cn type='integer'> 1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 2 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> q </ci>  <cn type='integer'> 1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <ci> k </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> l </ci>  </bvar>  <lowlimit>  <apply>  <plus />  <ci> k </ci>  <cn type='integer'> 1 </cn>  </apply>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> q </ci>  <cn type='integer'> 1 </cn>  </apply>  </uplimit>  <apply>  <times />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <ci> l </ci>  </apply>  <apply>  <plus />  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 1 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> l </ci>  <cn type='integer'> -1 </cn>  </apply>  </uplimit>  <apply>  <plus />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <ci> j </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <apply>  <plus />  <ci> j </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <eq />  <ci> σ </ci>  <apply>  <plus />  <ci> n </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <apply>  <eq />  <apply>  <ci> Subscript </ci>  <ci> a </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> n </ci>  </apply>  </apply>  <apply>  <in />  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <leq />  <cn type='integer'> 2 </cn>  <ci> j </ci>  <apply>  <plus />  <ci> q </ci>  <cn type='integer'> 1 </cn>  </apply>  </apply>  <apply>  <eq />  <ci> σ </ci>  <apply>  <sum />  <bvar>  <ci> j </ci>  </bvar>  <lowlimit>  <cn type='integer'> 2 </cn>  </lowlimit>  <uplimit>  <apply>  <plus />  <ci> q </ci>  <cn type='integer'> 1 </cn>  </apply>  </uplimit>  <apply>  <ci> Subscript </ci>  <ci> n </ci>  <ci> j </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n_"]], ",", SubscriptBox["a_", "2"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", RowBox[List["q_", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List[SubscriptBox["a_", "2"], "-", SubscriptBox["n_", "2"]]], ",", "\[Ellipsis]_", ",", RowBox[List[SubscriptBox["a_", RowBox[List["q_", "+", "1"]]], "-", SubscriptBox["n_", RowBox[List["q_", "+", "1"]]]]]]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "\[Sigma]"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], RowBox[List["q", "+", "1"]]], RowBox[List[SubscriptBox["n", "k"], " ", RowBox[List["(", RowBox[List[SubscriptBox["n", "k"], "-", "1"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]]]], "-", "1"]], ")"]]]]]]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "2"]], RowBox[List["q", "+", "1"]]], RowBox[List[SubscriptBox["n", "k"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["k", "-", "1"]]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["l", "=", RowBox[List["k", "+", "1"]]]], RowBox[List["q", "+", "1"]]], RowBox[List[SubscriptBox["nn", "l"], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["l", "-", "1"]]], RowBox[List["(", RowBox[List[SubscriptBox["a", "j"], "-", SubscriptBox["a", RowBox[List["j", "+", "1"]]], "+", SubscriptBox["n", RowBox[List["j", "+", "1"]]]]], ")"]]]], "-", "1"]], ")"]]]]]]]]]]]]]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "2"]], RowBox[List["q", "+", "1"]]], RowBox[List["Gamma", "[", SubscriptBox["a", "j"], "]"]]]]], "/;", RowBox[List[RowBox[List["\[Sigma]", "\[Equal]", RowBox[List["n", "+", "2"]]]], "&&", RowBox[List[SubscriptBox["aa", "1"], "\[Equal]", RowBox[List["-", "n"]]]], "&&", RowBox[List[SubscriptBox["n", "j"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["n", "j"], ">", "0"]], "&&", RowBox[List["2", "\[LessEqual]", "j", "\[LessEqual]", RowBox[List["q", "+", "1"]]]], "&&", RowBox[List["\[Sigma]", "\[Equal]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "2"]], RowBox[List["q", "+", "1"]]], SubscriptBox["n", "j"]]]]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |