  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.32.03.0088.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQRegularized[{}, {2/3, 4/3}, z] == 
 (E^((9 z^(1/3))/2) - 2 Cos[Pi/3 + (3/2) Sqrt[3] z^(1/3)])/
  (E^((3 z^(1/3))/2) (2 Sqrt[3] Pi z^(1/3))) 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["4", "3"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "2"]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "2"]], "-", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "3"], "+", RowBox[List[FractionBox["3", "2"], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["3"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 0 </mn>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mo>   </mo>  <mo> ; </mo>  <mrow>  <mfrac>  <mn> 2 </mn>  <mn> 3 </mn>  </mfrac>  <mo> , </mo>  <mfrac>  <mn> 4 </mn>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["2", "3"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox["4", "3"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation>  </semantics>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <msqrt>  <mn> 3 </mn>  </msqrt>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> exp </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mfrac>  <mrow>  <mn> 9 </mn>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mn> 3 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <msqrt>  <mn> 3 </mn>  </msqrt>  <mo> ⁢ </mo>  <mroot>  <mi> z </mi>  <mn> 3 </mn>  </mroot>  </mrow>  <mo> + </mo>  <mfrac>  <mi> π </mi>  <mn> 3 </mn>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <ci> HypergeometricPFQRegularized </ci>  <list />  <list>  <cn type='rational'> 2 <sep /> 3 </cn>  <cn type='rational'> 4 <sep /> 3 </cn>  </list>  <ci> z </ci>  </apply>  <apply>  <times />  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <pi />  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <exp />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <exp />  <apply>  <times />  <cn type='integer'> 9 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <apply>  <cos />  <apply>  <plus />  <apply>  <times />  <cn type='rational'> 3 <sep /> 2 </cn>  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <ci> z </ci>  <cn type='rational'> 1 <sep /> 3 </cn>  </apply>  </apply>  <apply>  <times />  <pi />  <apply>  <power />  <cn type='integer'> 3 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["2", "3"], ",", FractionBox["4", "3"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["3", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["9", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]], "2"]], "-", RowBox[List["2", " ", RowBox[List["Cos", "[", RowBox[List[FractionBox["\[Pi]", "3"], "+", RowBox[List[FractionBox["3", "2"], " ", SqrtBox["3"], " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]], "]"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["3"], " ", "\[Pi]", " ", SuperscriptBox["z", RowBox[List["1", "/", "3"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |