|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.32.03.0104.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{}, {a, a + 1/2, 2 a}, z] ==
(2^(-1 + 2 a)/Sqrt[Pi]) Hypergeometric0F1Regularized[2 a, 2 Sqrt[-z]]
Hypergeometric0F1Regularized[2 a, -2 Sqrt[-z]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["a", ",", RowBox[List["a", "+", FractionBox["1", "2"]]], ",", RowBox[List["2", "a"]]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]]], SqrtBox["\[Pi]"]], RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["2", "a"]], ",", RowBox[List["2", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]], RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["2", "a"]], ",", RowBox[List[RowBox[List["-", "2"]], SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 3 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mi> a </mi> <mo> , </mo> <mrow> <mi> a </mi> <mo> + </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["3", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox["a", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["a", "+", FractionBox["1", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["2", " ", "a"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["z", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <msup> <mn> 2 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <msqrt> <mi> π </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", " ", "a"]], Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox[RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]], Hypergeometric0F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 0 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mo>   </mo> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> ; </mo> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mi> z </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["0", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox["\[Null]", InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["2", " ", "a"]], Hypergeometric0F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1Regularized, Rule[Editable, False]], ";", TagBox[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List["-", "z"]]]]], Hypergeometric0F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1Regularized] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> HypergeometricPFQRegularized </ci> <list /> <list> <ci> a </ci> <apply> <plus /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric0F1Regularized </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["a_", ",", RowBox[List["a_", "+", FractionBox["1", "2"]]], ",", RowBox[List["2", " ", "a_"]]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["2", " ", "a"]]]]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["2", " ", "a"]], ",", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]], " ", RowBox[List["Hypergeometric0F1Regularized", "[", RowBox[List[RowBox[List["2", " ", "a"]], ",", RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List["-", "z"]]]]]]], "]"]]]], SqrtBox["\[Pi]"]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|