|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.32.03.0138.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{-n, 1, 3/2, d, e, 1 - d, 1 - e},
{1/2, 2 + n, 1 + d, 2 - d, 1 + e, 2 - e}, 1] ==
((-1)^n n! (Gamma[-e - n] Gamma[2 - d + n] -
Gamma[-d - n] Gamma[2 - e + n]) Sin[d Pi] Sin[e Pi])/
((d - e) (-1 + d + e) Pi^(5/2) Gamma[2 - d + n] Gamma[2 - e + n]) /;
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", "1", ",", FractionBox["3", "2"], ",", "d", ",", "e", ",", RowBox[List["1", "-", "d"]], ",", RowBox[List["1", "-", "e"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["2", "+", "n"]], ",", RowBox[List["1", "+", "d"]], ",", RowBox[List["2", "-", "d"]], ",", RowBox[List["1", "+", "e"]], ",", RowBox[List["2", "-", "e"]]]], "}"]], ",", "1"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "e"]], "-", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "d", "+", "n"]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "d"]], "-", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "e", "+", "n"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "\[Pi]"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "e"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "d", "+", "e"]], ")"]], " ", SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "d", "+", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "e", "+", "n"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 7 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 6 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> d </mi> <mo> , </mo> <mi> e </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> e </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mi> e </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> e </mi> </mrow> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["7", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["6", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", "n"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["d", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["e", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "d"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "e"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["n", "+", "2"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["d", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", "d"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["e", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", "e"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> ⩵ </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mi> sin </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> e </mi> </mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <msup> <mi> π </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> e </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> d </mi> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> e </mi> <mo> + </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <cn type='integer'> 1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <ci> d </ci> <ci> e </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <ci> e </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </list> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <factorial /> <ci> n </ci> </apply> <ci> sin </ci> <apply> <times /> <ci> d </ci> <pi /> </apply> <apply> <sin /> <apply> <times /> <ci> e </ci> <pi /> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> n </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <apply> <power /> <pi /> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> </apply> <apply> <plus /> <ci> d </ci> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <ci> n </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> <ci> n </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n_"]], ",", "1", ",", FractionBox["3", "2"], ",", "d_", ",", "e_", ",", RowBox[List["1", "-", "d_"]], ",", RowBox[List["1", "-", "e_"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List["2", "+", "n_"]], ",", RowBox[List["1", "+", "d_"]], ",", RowBox[List["2", "-", "d_"]], ",", RowBox[List["1", "+", "e_"]], ",", RowBox[List["2", "-", "e_"]]]], "}"]], ",", "1"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "n"], " ", RowBox[List["n", "!"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "e"]], "-", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "d", "+", "n"]], "]"]]]], "-", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[RowBox[List["-", "d"]], "-", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "e", "+", "n"]], "]"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "\[Pi]"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["d", "-", "e"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "d", "+", "e"]], ")"]], " ", SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "d", "+", "n"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "e", "+", "n"]], "]"]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|