|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.32.03.0148.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{1, 3/2, 3/2, d, d, 1 - d, 1 - d},
{1/2, 1/2, 1 + d, 1 + d, 2 - d, 2 - d}, -1] ==
(Sin[d Pi]^2/((1 - 2 d) Pi^3)) (-2 Pi Csc[d Pi] - 2 PolyGamma[d/2] +
2 PolyGamma[(1 + d)/2] + ((2 d - 1)/2) (2 Pi^2 Cot[d Pi] Csc[d Pi] -
PolyGamma[1, d/2] + PolyGamma[1, (1 + d)/2])) /; d != 1/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["3", "2"], ",", FractionBox["3", "2"], ",", "d", ",", "d", ",", RowBox[List["1", "-", "d"]], ",", RowBox[List["1", "-", "d"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", RowBox[List["1", "+", "d"]], ",", RowBox[List["1", "+", "d"]], ",", RowBox[List["2", "-", "d"]], ",", RowBox[List["2", "-", "d"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "\[Equal]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]], "2"], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "d"]]]], ")"]], " ", SuperscriptBox["\[Pi]", "3"]]]], RowBox[List["(", " ", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", FractionBox["d", "2"], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["1", "+", "d"]], "2"], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["2", "d"]], "-", "1"]], "2"], RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Cot", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox["d", "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox[RowBox[List["1", "+", "d"]], "2"]]], "]"]]]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List["d", "\[NotEqual]", FractionBox["1", "2"]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 7 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 6 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mi> d </mi> <mo> , </mo> <mi> d </mi> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> d </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> d </mi> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> d </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["7", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["6", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox["3", "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["d", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox["d", HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "d"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "d"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["d", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["d", "+", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", "d"]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[RowBox[List["2", "-", "d"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["-", "1"]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 3 </mn> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mi> d </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mi> d </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> d </mi> <mo> ≠ </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <cn type='rational'> 3 <sep /> 2 </cn> <ci> d </ci> <ci> d </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> </list> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> d </ci> <pi /> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <cot /> <apply> <times /> <ci> d </ci> <pi /> </apply> </apply> <apply> <csc /> <apply> <times /> <ci> d </ci> <pi /> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <csc /> <apply> <times /> <ci> d </ci> <pi /> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <ci> d </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <neq /> <ci> d </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox["3", "2"], ",", FractionBox["3", "2"], ",", "d_", ",", "d_", ",", RowBox[List["1", "-", "d_"]], ",", RowBox[List["1", "-", "d_"]]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", RowBox[List["1", "+", "d_"]], ",", RowBox[List["1", "+", "d_"]], ",", RowBox[List["2", "-", "d_"]], ",", RowBox[List["2", "-", "d_"]]]], "}"]], ",", RowBox[List["-", "1"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", FractionBox["d", "2"], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", FractionBox[RowBox[List["1", "+", "d"]], "2"], "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Cot", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Csc", "[", RowBox[List["d", " ", "\[Pi]"]], "]"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox["d", "2"]]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", FractionBox[RowBox[List["1", "+", "d"]], "2"]]], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", RowBox[List["2", " ", "d"]]]], ")"]], " ", SuperscriptBox["\[Pi]", "3"]]]], "/;", RowBox[List["d", "\[NotEqual]", FractionBox["1", "2"]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|