Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQRegularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] > General characteristics > Poles and essential singularities > With respect to bj





http://functions.wolfram.com/07.32.04.0010.01









  


  










Input Form





Singularities[HypergeometricPFQRegularized[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z], Subscript[b, j]] == {{ComplexInfinity, Infinity}} /; 1 <= j <= q










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Singularities", "[", RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], ",", SubscriptBox["b", "j"]]], "]"]], "\[Equal]", RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]], "}"]]]], "/;", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "q"]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> &#119982;&#119998;&#120003;&#8458; </mi> <msub> <mi> b </mi> <mi> j </mi> </msub> </msub> <mo> ( </mo> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mi> p </mi> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;b&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mo> { </mo> <mrow> <mo> { </mo> <mrow> <mover> <mi> &#8734; </mi> <mo> ~ </mo> </mover> <mo> , </mo> <mi> &#8734; </mi> </mrow> <mo> } </mo> </mrow> <mo> } </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mn> 1 </mn> <mo> &#8804; </mo> <mi> j </mi> <mo> &#8804; </mo> <mi> q </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <ms> &#119982;&#119998;&#120003;&#8458; </ms> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> j </ms> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubscriptBox </ci> <apply> <ci> ErrorBox </ci> <ms> &#62387; </ms> </apply> <apply> <ci> FormBox </ci> <ms> p </ms> <ci> TraditionalForm </ci> </apply> </apply> <apply> <ci> SubscriptBox </ci> <apply> <ci> OverscriptBox </ci> <ms> F </ms> <ms> ~ </ms> </apply> <apply> <ci> FormBox </ci> <ms> q </ms> <ci> TraditionalForm </ci> </apply> </apply> </list> </apply> <ms> &#8289; </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> a </ms> <ms> p </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <apply> <ci> TagBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> 1 </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <ms> &#8230; </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> , </ms> <apply> <ci> TagBox </ci> <apply> <ci> SubscriptBox </ci> <ms> b </ms> <ms> q </ms> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <apply> <ci> InterpretTemplate </ci> <apply> <ci> Function </ci> <list> <apply> <ci> SlotSequence </ci> <cn type='integer'> 1 </cn> </apply> </list> </apply> </apply> </apply> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> <ms> ; </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <ci> HypergeometricPFQ </ci> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ] </ms> </list> </apply> <ms> &#10869; </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <ms> { </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> OverscriptBox </ci> <ms> &#8734; </ms> <ms> ~ </ms> </apply> <ms> , </ms> <ms> &#8734; </ms> </list> </apply> <ms> } </ms> </list> </apply> <ms> } </ms> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> &#8804; </ms> <ms> j </ms> <ms> &#8804; </ms> <ms> q </ms> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Singularities", "[", RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], ",", SubscriptBox["b_", "j"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["{", RowBox[List["{", RowBox[List["ComplexInfinity", ",", "\[Infinity]"]], "}"]], "}"]], "/;", RowBox[List["1", "\[LessEqual]", "j", "\[LessEqual]", "q"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29