  
| 
 | 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   http://functions.wolfram.com/07.32.06.0007.01
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
 | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
    HypergeometricPFQRegularized[{Subscript[a, 1], \[Ellipsis], 
    Subscript[a, q + 1]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, 
   z] == (1/Product[Gamma[Subscript[a, k]], {k, 1, q + 1}]) 
   (Sum[((Gamma[Subscript[a, 1] + j] Gamma[Subscript[a, 2] + j])/j!) 
      Sum[(((Subscript[\[Psi], q] + k - j - 1)! 
          HypergeometricPFQExpansionCoefficient[{Subscript[a, 1], 
            \[Ellipsis], Subscript[a, q + 1]}, {Subscript[b, 1], \[Ellipsis], 
            Subscript[b, q]}, k])/(Gamma[Subscript[a, 1] + Subscript[\[Psi], 
             q] + k] Gamma[Subscript[a, 2] + Subscript[\[Psi], q] + k])) 
        (z - 1)^j, {k, 0, Infinity}], {j, 0, Subscript[\[Psi], q] - 1}] + 
    (z - 1)^Subscript[\[Psi], q] 
     Sum[((Pochhammer[Subscript[a, 1] + Subscript[\[Psi], q], j] 
         Pochhammer[Subscript[a, 2] + Subscript[\[Psi], q], j])/
        (j! (Subscript[\[Psi], q] + j)!)) 
       (Sum[((-1)^j j! (k - j - 1)! HypergeometricPFQExpansionCoefficient[
            {Subscript[a, 1], \[Ellipsis], Subscript[a, q + 1]}, 
            {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, k])/
          (Pochhammer[Subscript[a, 1] + Subscript[\[Psi], q], k] 
           Pochhammer[Subscript[a, 2] + Subscript[\[Psi], q], k]), 
         {k, j + 1, Infinity}] + 
        Sum[((Pochhammer[-j, k] HypergeometricPFQExpansionCoefficient[
             {Subscript[a, 1], \[Ellipsis], Subscript[a, q + 1]}, 
             {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, k])/
           (Pochhammer[Subscript[a, 1] + Subscript[\[Psi], q], k] 
            Pochhammer[Subscript[a, 2] + Subscript[\[Psi], q], k])) 
          (-Log[1 - z] + PolyGamma[j - k + 1] + PolyGamma[
            j + Subscript[\[Psi], q] + 1] - PolyGamma[Subscript[\[Psi], q] + 
             Subscript[a, 1] + j] - PolyGamma[Subscript[\[Psi], q] + 
             Subscript[a, 2] + j]), {k, 0, j}]) (1 - z)^j, 
      {j, 0, Infinity}]) /; Abs[1 - z] < 1 && Subscript[\[Psi], q] == 
   Sum[Subscript[b, j], {j, 1, q}] - Sum[Subscript[a, j], {j, 1, q + 1}] && 
  q > 1 && Element[Subscript[\[Psi], q], Integers] && 
  Subscript[\[Psi], q] >= 0 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["q", "+", "1"]]], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[SubscriptBox["\[Psi]", "q"], "-", "1"]]], RowBox[List[FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "+", "j"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "+", "j"]], "]"]]]], RowBox[List["j", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", "k", "-", "j", "-", "1"]], ")"]], "!"]], RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "k"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "q"], "+", "k"]], "]"]], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "q"], "+", "k"]], "]"]]]], ")"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "j"]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], SubscriptBox["\[Psi]", "q"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "j"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "j"]], "]"]]]], RowBox[List[RowBox[List["j", "!"]], RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", "j"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["j", "+", "1"]]]], "\[Infinity]"], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], RowBox[List["j", "!"]], RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j", "-", "1"]], ")"]], "!"]], RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "k"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]]]], ")"]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "j"]], ",", "k"]], "]"]], RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "k"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]]]], ")"]]]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["j", "-", "k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["j", "+", SubscriptBox["\[Psi]", "q"], "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", SubscriptBox["a", "1"], "+", "j"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", SubscriptBox["a", "2"], "+", "j"]], "]"]]]], ")"]]]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "j"]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["1", "-", "z"]], "]"]], "<", "1"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Equal]", RowBox[List[RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "+", "1"]]], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["a", "j"]]]]]]], "\[And]", RowBox[List["q", ">", "1"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Element]", "Integers"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[GreaterEqual]", "0"]]]]]]]] 
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
    
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
 
  | 
   
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  <msub>  <mover>  <mi> F </mi>  <mo> ~ </mo>  </mover>  <mi> q </mi>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]] </annotation>  </semantics>  <mo> ; </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", HypergeometricPFQ, Rule[Editable, True]] </annotation>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mrow>  <munderover>  <mo> ∏ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <msub>  <mi> a </mi>  <mi> k </mi>  </msub>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ")"]], "j"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ")"]], "j"], Pochhammer] </annotation>  </semantics>  </mrow>  <mrow>  <mrow>  <mi> j </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <mi> j </mi>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  </mrow>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> ℰ </mi>  <mi> k </mi>  <mrow>  <mo> ( </mo>  <mi> q </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> j </mi>  </munderover>  <mrow>  <mfrac>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mi> j </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "j"]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mrow>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <msub>  <mrow>  <mo> ( </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msub>  <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["a", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ")"]], "k"], Pochhammer] </annotation>  </semantics>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mi> log </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> - </mo>  <mi> k </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> + </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> - </mo>  <mrow>  <semantics>  <mi> ψ </mi>  <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation>  </semantics>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> ℰ </mi>  <mi> k </mi>  <mrow>  <mo> ( </mo>  <mi> q </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  </mrow>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> j </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> j </mi>  <mo> ! </mo>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mi> ∞ </mi>  </munderover>  <mrow>  <mfrac>  <mrow>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> - </mo>  <mi> j </mi>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ! </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <mi> ℰ </mi>  <mi> k </mi>  <mrow>  <mo> ( </mo>  <mi> q </mi>  <mo> ) </mo>  </mrow>  </msubsup>  <mo> ( </mo>  <mrow>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> a </mi>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msub>  </mrow>  <mo> } </mo>  </mrow>  <mo> , </mo>  <mrow>  <mo> { </mo>  <mrow>  <msub>  <mi> b </mi>  <mn> 1 </mn>  </msub>  <mo> , </mo>  <mo> … </mo>  <mo> , </mo>  <msub>  <mi> b </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> } </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 1 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> Γ </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> k </mi>  <mo> + </mo>  <msub>  <mi> a </mi>  <mn> 2 </mn>  </msub>  <mo> + </mo>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> j </mi>  </msup>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation>  </semantics>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mi> z </mi>  </mrow>  <semantics>  <mo> ❘ </mo>  <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation>  </semantics>  </mrow>  <mo> < </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> ⩵ </mo>  <mrow>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mi> q </mi>  </munderover>  <msub>  <mi> b </mi>  <mi> j </mi>  </msub>  </mrow>  <mo> - </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> j </mi>  <mo> = </mo>  <mn> 1 </mn>  </mrow>  <mrow>  <mi> q </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </munderover>  <msub>  <mi> a </mi>  <mi> j </mi>  </msub>  </mrow>  </mrow>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> q </mi>  <mo> > </mo>  <mn> 1 </mn>  </mrow>  <mo> ∧ </mo>  <mrow>  <msub>  <mi> ψ </mi>  <mi> q </mi>  </msub>  <mo> ∈ </mo>  <semantics>  <mi> ℕ </mi>  <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalN]", Function[Integers]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> FormBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> ErrorBox </ci>  <ms>  </ms>  </apply>  <apply>  <ci> FormBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  <ci> TraditionalForm </ci>  </apply>  </apply>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> OverscriptBox </ci>  <ms> F </ms>  <ms> ~ </ms>  </apply>  <apply>  <ci> FormBox </ci>  <ms> q </ms>  <ci> TraditionalForm </ci>  </apply>  </apply>  </list>  </apply>  <ms> ⁡ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <apply>  <ci> InterpretTemplate </ci>  <apply>  <ci> Function </ci>  <list>  <apply>  <ci> SlotSequence </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> ; </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <ms> … </ms>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> , </ms>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <apply>  <ci> InterpretTemplate </ci>  <apply>  <ci> Function </ci>  <list>  <apply>  <ci> SlotSequence </ci>  <cn type='integer'> 1 </cn>  </apply>  </list>  </apply>  </apply>  </apply>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  <ms> ; </ms>  <apply>  <ci> TagBox </ci>  <ms> z </ms>  <ci> HypergeometricPFQ </ci>  <apply>  <ci> Rule </ci>  <ci> Editable </ci>  <true />  </apply>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> ⩵ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <ms> 1 </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∏ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <ms> ( </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> k </ms>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> = </ms>  <ms> 0 </ms>  </list>  </apply>  <ms> ∞ </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> j </ms>  </apply>  <ci> Pochhammer </ci>  </apply>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> j </ms>  </apply>  <ci> Pochhammer </ci>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> ! </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> ! </ms>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </list>  </apply>  <ms> ∞ </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> j </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> ! </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> - </ms>  <ms> j </ms>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> ! </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> k </ms>  </apply>  <ci> Pochhammer </ci>  </apply>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> k </ms>  </apply>  <ci> Pochhammer </ci>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <ms> ℰ </ms>  <ms> k </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <ms> q </ms>  <ms> ) </ms>  </list>  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 0 </ms>  </list>  </apply>  <ms> j </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <ms> j </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> k </ms>  </apply>  <ci> Pochhammer </ci>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> k </ms>  </apply>  <ci> Pochhammer </ci>  </apply>  <apply>  <ci> TagBox </ci>  <apply>  <ci> SubscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> k </ms>  </apply>  <ci> Pochhammer </ci>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> - </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> log </ms>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <ms> z </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> ψ </ms>  <ci> PolyGamma </ci>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> - </ms>  <ms> k </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> ψ </ms>  <ci> PolyGamma </ci>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> - </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> ψ </ms>  <ci> PolyGamma </ci>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> - </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> TagBox </ci>  <ms> ψ </ms>  <ci> PolyGamma </ci>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <ms> ℰ </ms>  <ms> k </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <ms> q </ms>  <ms> ) </ms>  </list>  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <ms> z </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> j </ms>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> + </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> = </ms>  <ms> 0 </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> ! </ms>  </list>  </apply>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> = </ms>  <ms> 0 </ms>  </list>  </apply>  <ms> ∞ </ms>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> FractionBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> - </ms>  <ms> j </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> ! </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubsuperscriptBox </ci>  <ms> ℰ </ms>  <ms> k </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <ms> q </ms>  <ms> ) </ms>  </list>  </apply>  </apply>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  <ms> , </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> { </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> 1 </ms>  </apply>  <ms> , </ms>  <ms> … </ms>  <ms> , </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> } </ms>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 1 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> Γ </ms>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> k </ms>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> 2 </ms>  </apply>  <ms> + </ms>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </apply>  <apply>  <ci> SuperscriptBox </ci>  <apply>  <ci> RowBox </ci>  <list>  <ms> ( </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> z </ms>  <ms> - </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  <ms> j </ms>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> ) </ms>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> /; </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <ms>  </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> 1 </ms>  <ms> - </ms>  <ms> z </ms>  </list>  </apply>  <ms>  </ms>  </list>  </apply>  <ms> < </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ∧ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  <ms> ⩵ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> q </ms>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> b </ms>  <ms> j </ms>  </apply>  </list>  </apply>  <ms> - </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> UnderoverscriptBox </ci>  <ms> ∑ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> j </ms>  <ms> = </ms>  <ms> 1 </ms>  </list>  </apply>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> + </ms>  <ms> 1 </ms>  </list>  </apply>  </apply>  <apply>  <ci> SubscriptBox </ci>  <ms> a </ms>  <ms> j </ms>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ms> ∧ </ms>  <apply>  <ci> RowBox </ci>  <list>  <ms> q </ms>  <ms> > </ms>  <ms> 1 </ms>  </list>  </apply>  <ms> ∧ </ms>  <apply>  <ci> RowBox </ci>  <list>  <apply>  <ci> SubscriptBox </ci>  <ms> ψ </ms>  <ms> q </ms>  </apply>  <ms> ∈ </ms>  <apply>  <ci> TagBox </ci>  <ms> ℕ </ms>  <apply>  <ci> Function </ci>  <integers />  </apply>  </apply>  </list>  </apply>  </list>  </apply>  </list>  </apply>  <ci> TraditionalForm </ci>  </apply>  </annotation-xml>  </semantics>  </math> 
   
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 
  |   
  |  
  |  
  |   
  |  |  
  |   
  |  
  |  
  |   
  | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", RowBox[List["q_", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], RowBox[List[SubscriptBox["\[Psi]", "q"], "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "+", "j"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "+", "j"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", "k", "-", "j", "-", "1"]], ")"]], "!"]], " ", RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "q"]]], "}"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], "j"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["\[Psi]", "q"], "+", "k"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["aa", "2"], "+", SubscriptBox["\[Psi]", "q"], "+", "k"]], "]"]]]]]]]]], RowBox[List["j", "!"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], SubscriptBox["\[Psi]", "q"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "j"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["aa", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "j"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["j", "+", "1"]]]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "j"], " ", RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "-", "j", "-", "1"]], ")"]], "!"]], " ", RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "q"]]], "}"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["aa", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]]]]]]], "+", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "j"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "j"]], ",", "k"]], "]"]], " ", RowBox[List["HypergeometricPFQExpansionCoefficient", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "q"]]], "}"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["j", "-", "k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["j", "+", SubscriptBox["\[Psi]", "q"], "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", SubscriptBox["aa", "1"], "+", "j"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", SubscriptBox["aa", "2"], "+", "j"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["aa", "1"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[SubscriptBox["aa", "2"], "+", SubscriptBox["\[Psi]", "q"]]], ",", "k"]], "]"]]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], "j"]]], RowBox[List[RowBox[List["j", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List[SubscriptBox["\[Psi]", "q"], "+", "j"]], ")"]], "!"]]]]]]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["q", "+", "1"]]], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List["1", "-", "z"]], "]"]], "<", "1"]], "&&", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "+", "1"]]], SubscriptBox["a", "j"]]]]]]], "&&", RowBox[List["q", ">", "1"]], "&&", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Element]", "Integers"]], "&&", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[GreaterEqual]", "0"]]]]]]]]]]  |  
  |  
  |   
  |  
  |  
  | 
  
  
 |  
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  | 
   Date Added to functions.wolfram.com (modification date)
   |   
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
  
  | 
 
  
  | 
  
  | 
 
  
  | 
  
  | 
  
  | 
 
 | 
  | 
  
  
  
 |  
 
 |