|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Hypergeometric Functions
HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z]
Series representations
Generalized power series
Expansions at z==1 for p==q+1
The major terms in the general formula for expansions of function q+1F~q(a1,...,aq+1;b1,...,bq;z) at z==1
|
|
|
|
|
|
|
http://functions.wolfram.com/07.32.06.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{Subscript[a, 1], \[Ellipsis],
Subscript[a, q + 1]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]},
z] \[Proportional]
HypergeometricPFQRegularized[{Subscript[a, 1], \[Ellipsis],
Subscript[a, q + 1]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]},
1] (1 + O[z - 1]) + (Gamma[-Subscript[\[Psi], q]]/
Product[Gamma[Subscript[a, k]], {k, 1, q + 1}])
(1 - z)^Subscript[\[Psi], q] (1 + O[z - 1]) /;
(z -> 1) && Subscript[\[Psi], q] == Sum[Subscript[b, j], {j, 1, q}] -
Sum[Subscript[a, j], {j, 1, q + 1}] &&
!Element[Subscript[\[Psi], q], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Proportional]", RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "1"]], "]"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List["Gamma", "[", RowBox[List["-", SubscriptBox["\[Psi]", "q"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["q", "+", "1"]]], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "q"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]], "\[And]", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Equal]", RowBox[List[RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["b", "j"]]], "-", RowBox[List[StyleBox[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "+", "1"]]], Rule[LimitsPositioningTokens, List["\[Sum]", "\[Product]", "\[Intersection]", "\[Union]", "\[UnionPlus]", "\[Wedge]", "\[Vee]", "lim", "max", "min", "\[CirclePlus]", "\[CircleMinus]", "\[CircleTimes]", "\[CircleDot]"]]], SubscriptBox["a", "j"]]]]]]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List[SubscriptBox["\[Psi]", "q"], ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ∝ </mo> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List["q", "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", RowBox[List["q", "+", "1"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox["1", HypergeometricPFQ, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <msub> <mi> ψ </mi> <mi> q </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msub> <mi> ψ </mi> <mi> q </mi> </msub> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> ψ </mi> <mi> q </mi> </msub> <mo> ⩵ </mo> <mrow> <mrow> <munderover> <mo movablelimits='false'> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mrow> <munderover> <mo movablelimits='false'> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> ψ </mi> <mi> q </mi> </msub> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> </list> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> </list> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> ψ </ci> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <ci> Gamma </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <ci> Subscript </ci> <ci> ψ </ci> <ci> q </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <ci> Rule </ci> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> ψ </ci> <ci> q </ci> </apply> <apply> <plus /> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> j </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sum /> <bvar> <ci> j </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </uplimit> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> j </ci> </apply> </apply> </apply> </apply> </apply> <apply> <notin /> <apply> <ci> Subscript </ci> <ci> ψ </ci> <ci> q </ci> </apply> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", RowBox[List["q_", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["aa", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", RowBox[List["q", "+", "1"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["bb", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["bb", "q"]]], "}"]], ",", "1"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["Gamma", "[", RowBox[List["-", SubscriptBox["\[Psi]", "q"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], SubscriptBox["\[Psi]", "q"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["q", "+", "1"]]], RowBox[List["Gamma", "[", SubscriptBox["a", "k"], "]"]]]]]]], "/;", RowBox[List[RowBox[List["(", RowBox[List["z", "\[Rule]", "1"]], ")"]], "&&", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "+", "1"]]], SubscriptBox["a", "j"]]]]]]], "&&", RowBox[List["!", RowBox[List[SubscriptBox["\[Psi]", "q"], "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|