
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.32.06.0026.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
HypergeometricPFQRegularized[{-n, Subscript[a, 2], Subscript[a, 3],
\[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis],
Subscript[b, q]}, z] ==
(Product[Pochhammer[Subscript[a, k], n], {k, 2, p}]/
Product[Gamma[Subscript[b, k] + n], {k, 1, q}]) (-z)^n
HypergeometricPFQ[{-n, 1 - n - Subscript[b, 1], \[Ellipsis],
1 - n - Subscript[b, q]}, {1 - n - Subscript[a, 2],
1 - n - Subscript[a, 3], \[Ellipsis], 1 - n - Subscript[a, p]},
(-1)^(p + q - 1)/z] /; Element[n, Integers] && n > 0
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", SubscriptBox["a", "2"], ",", SubscriptBox["a", "3"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "2"]], "p"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "k"], ",", "n"]], "]"]]]]]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], "q"], RowBox[List["Gamma", "[", RowBox[List[SubscriptBox["b", "k"], "+", "n"]], "]"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "z"]], ")"]], "n"], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List["1", "-", "n", "-", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", "n", "-", SubscriptBox["b", "q"]]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", "n", "-", SubscriptBox["a", "2"]]], ",", RowBox[List["1", "-", "n", "-", SubscriptBox["a", "3"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "-", "n", "-", SubscriptBox["a", "p"]]]]], "}"]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "+", "q", "-", "1"]]], "z"]]], "]"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mrow> <msub> <mi> a </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <mo> ; </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[RowBox[List["-", "n"]], ",", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["a", "2"], HypergeometricPFQ, Rule[Editable, True]], ",", SubscriptBox["a", "3"], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["a", "p"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[SubscriptBox["b", "1"], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[SubscriptBox["b", "q"], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox["z", HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 2 </mn> </mrow> <mi> p </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> k </mi> </msub> <mo> ) </mo> </mrow> <mi> n </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "k"], ")"]], "n"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> b </mi> <mi> k </mi> </msub> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> n </mi> </msup> <mo> ⁢ </mo> <mtext> </mtext> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mi> F </mi> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> <mo> - </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> <mo> - </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> <mo> - </mo> <msub> <mi> a </mi> <mn> 3 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> n </mi> <mo> - </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> </mrow> <mo> ; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> p </mi> <mo> + </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mi> z </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", RowBox[List["q", "+", "1"]]], SubscriptBox["F", FormBox[RowBox[List["p", "-", "1"]], TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[RowBox[List["-", "n"]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "n", "-", SubscriptBox["b", "1"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", RowBox[List[TagBox[RowBox[List["1", "-", "n", "-", SubscriptBox["b", "q"]]], HypergeometricPFQ, Rule[Editable, True]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", "n", "-", SubscriptBox["a", "2"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "n", "-", SubscriptBox["a", "3"]]], HypergeometricPFQ, Rule[Editable, True]], ",", TagBox["\[Ellipsis]", HypergeometricPFQ, Rule[Editable, True]], ",", TagBox[RowBox[List["1", "-", "n", "-", SubscriptBox["a", "p"]]], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]], ";", TagBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["p", "+", "q", "-", "1"]]], "z"], HypergeometricPFQ, Rule[Editable, True]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> HypergeometricPFQ </ci> <list> <apply> <ci> Subscript </ci> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> p </ci> </apply> </list> <list> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> <ci> … </ci> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> q </ci> </apply> </list> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 2 </cn> </lowlimit> <uplimit> <ci> p </ci> </uplimit> <apply> <ci> Pochhammer </ci> <apply> <ci> Subscript </ci> <ci> a </ci> <ci> k </ci> </apply> <ci> n </ci> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <ci> q </ci> </uplimit> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> b </ci> <ci> k </ci> </apply> <ci> n </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> <ci> n </ci> </apply> <apply> <ci> HypergeometricPFQ </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> b </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|