|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.32.17.0022.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
HypergeometricPFQRegularized[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]},
{Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] ==
(2 Pi)^(((n - 1)/2) (q + 1)) Sum[n^(-\[Eta] - (q + 1) k) z^k
Product[Pochhammer[Subscript[a, j], k], {j, 1, p}]
HypergeometricPFQRegularized[{1, (Subscript[a, 1] + k)/n, \[Ellipsis],
(Subscript[a, 1] + k + n - 1)/n, \[Ellipsis], (Subscript[a, p] + k)/n,
\[Ellipsis], (Subscript[a, p] + k + n - 1)/n},
{(k + 1)/n, \[Ellipsis], (k + n)/n, (Subscript[b, 1] + k)/n,
\[Ellipsis], (Subscript[b, 1] + k + n - 1)/n, \[Ellipsis],
(Subscript[b, q] + k)/n, \[Ellipsis], (Subscript[b, q] + k + n - 1)/
n}, n^(n (p - q - 1)) z^n], {k, 0, n - 1}] /;
\[Eta] == Sum[Subscript[b, j], {j, 1, q}] + (q - 1)/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List[FractionBox[RowBox[List["n", "-", "1"]], "2"], RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[SuperscriptBox["n", RowBox[List[RowBox[List["-", "\[Eta]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], "k"]]]]], SuperscriptBox["z", "k"], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "k"]], "]"]]]], ")"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List["n", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], SuperscriptBox["z", "n"]]]]], "]"]]]]]]]]]], "/;", RowBox[List["\[Eta]", "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "+", FractionBox[RowBox[List["q", "-", "1"]], "2"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> ; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", "p"], ";", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", "q"], ";", "z"]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mi> n </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> η </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> n </mi> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List[RowBox[List["n", " ", "p"]], "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], RowBox[List[RowBox[List["n", " ", "q"]], "+", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k", "+", "n", "-", "1"]], "n"], ";", FractionBox[RowBox[List["k", "+", "1"]], "n"]]], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k", "+", "n", "-", "1"]], "n"], ";", RowBox[List[SuperscriptBox["n", RowBox[List["n", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], SuperscriptBox["z", "n"]]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> η </mi> <mo> ⩵ </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mi> p </mi> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> ; </mo> <msub> <mi> b </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> ; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", "p"], ";", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", "q"], ";", "z"]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <msup> <mi> n </mi> <mrow> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> η </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> k </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <semantics> <msub> <mrow> <mo> ( </mo> <msub> <mi> a </mi> <mi> j </mi> </msub> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> p </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mi> n </mi> </mrow> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ; </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> </mrow> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <mi> k </mi> <mo> + </mo> <mi> n </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> , </mo> <mo> … </mo> <mo> , </mo> <mrow> <mfrac> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> n </mi> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> n </mi> </msup> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List[RowBox[List["n", " ", "p"]], "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], RowBox[List[RowBox[List["n", " ", "q"]], "+", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k", "+", "n", "-", "1"]], "n"], ";", FractionBox[RowBox[List["k", "+", "1"]], "n"]]], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k", "+", "n", "-", "1"]], "n"], ";", RowBox[List[SuperscriptBox["n", RowBox[List["n", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], SuperscriptBox["z", "n"]]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> η </mi> <mo> ⩵ </mo> <mrow> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> q </mi> </munderover> <msub> <mi> b </mi> <mi> j </mi> </msub> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[SuperscriptBox["n", RowBox[List[RowBox[List["-", "\[Eta]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], " ", "k"]]]]], " ", SuperscriptBox["z", "k"], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["aa", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["aa", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["aa", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["aa", "p"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["bb", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["bb", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["bb", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["bb", "q"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List["n", " ", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], " ", SuperscriptBox["z", "n"]]]]], "]"]]]]]]]], "/;", RowBox[List["\[Eta]", "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "+", FractionBox[RowBox[List["q", "-", "1"]], "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|