html, body, form { margin: 0; padding: 0; width: 100%; } #calculate { position: relative; width: 177px; height: 110px; background: transparent url(/images/alphabox/embed_functions_inside.gif) no-repeat scroll 0 0; } #i { position: relative; left: 18px; top: 44px; width: 133px; border: 0 none; outline: 0; font-size: 11px; } #eq { width: 9px; height: 10px; background: transparent; position: absolute; top: 47px; right: 18px; cursor: pointer; }

 HypergeometricPFQRegularized

 http://functions.wolfram.com/07.32.17.0022.01

 Input Form

 HypergeometricPFQRegularized[{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] == (2 Pi)^(((n - 1)/2) (q + 1)) Sum[n^(-\[Eta] - (q + 1) k) z^k Product[Pochhammer[Subscript[a, j], k], {j, 1, p}] HypergeometricPFQRegularized[{1, (Subscript[a, 1] + k)/n, \[Ellipsis], (Subscript[a, 1] + k + n - 1)/n, \[Ellipsis], (Subscript[a, p] + k)/n, \[Ellipsis], (Subscript[a, p] + k + n - 1)/n}, {(k + 1)/n, \[Ellipsis], (k + n)/n, (Subscript[b, 1] + k)/n, \[Ellipsis], (Subscript[b, 1] + k + n - 1)/n, \[Ellipsis], (Subscript[b, q] + k)/n, \[Ellipsis], (Subscript[b, q] + k + n - 1)/ n}, n^(n (p - q - 1)) z^n], {k, 0, n - 1}] /; \[Eta] == Sum[Subscript[b, j], {j, 1, q}] + (q - 1)/2

 Standard Form

 Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List[FractionBox[RowBox[List["n", "-", "1"]], "2"], RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[SuperscriptBox["n", RowBox[List[RowBox[List["-", "\[Eta]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], "k"]]]]], SuperscriptBox["z", "k"], RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "k"]], "]"]]]], ")"]], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List["n", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], SuperscriptBox["z", "n"]]]]], "]"]]]]]]]]]], "/;", RowBox[List["\[Eta]", "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "+", FractionBox[RowBox[List["q", "-", "1"]], "2"]]]]]]]]]

 MathML Form

 p F ~ q ( a 1 , , a p ; b 1 , , b q ; z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", "p"], ";", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", "q"], ";", "z"]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] ( 2 π ) n - 1 2 ( q + 1 ) k = 0 n - 1 n - ( q + 1 ) k - η z k ( j = 1 p ( a j ) k TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] ) n p + 1 F ~ n q + n ( 1 , a 1 + k n , , a 1 + k + n - 1 n , , a p + k n , , a p + k + n - 1 n ; k + 1 n , , k + n n , b 1 + k n , , b 1 + k + n - 1 n , , b q + k n , , b q + k + n - 1 n ; n n ( p - q - 1 ) z n ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List[RowBox[List["n", " ", "p"]], "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], RowBox[List[RowBox[List["n", " ", "q"]], "+", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k", "+", "n", "-", "1"]], "n"], ";", FractionBox[RowBox[List["k", "+", "1"]], "n"]]], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k", "+", "n", "-", "1"]], "n"], ";", RowBox[List[SuperscriptBox["n", RowBox[List["n", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], SuperscriptBox["z", "n"]]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] /; η j = 1 q b j + q - 1 2 p F ~ q ( a 1 , , a p ; b 1 , , b q ; z ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["p", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["q", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["a", "p"], ";", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List[SubscriptBox["b", "q"], ";", "z"]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] ( 2 π ) n - 1 2 ( q + 1 ) k = 0 n - 1 n - ( q + 1 ) k - η z k ( j = 1 p ( a j ) k TagBox[SubscriptBox[RowBox[List["(", SubscriptBox["a", "j"], ")"]], "k"], Pochhammer] ) n p + 1 F ~ n q + n ( 1 , a 1 + k n , , a 1 + k + n - 1 n , , a p + k n , , a p + k + n - 1 n ; k + 1 n , , k + n n , b 1 + k n , , b 1 + k + n - 1 n , , b q + k n , , b q + k + n - 1 n ; n n ( p - q - 1 ) z n ) TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox[RowBox[List[RowBox[List["n", " ", "p"]], "+", "1"]], TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], RowBox[List[RowBox[List["n", " ", "q"]], "+", "n"]]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["a", "p"], "+", "k", "+", "n", "-", "1"]], "n"], ";", FractionBox[RowBox[List["k", "+", "1"]], "n"]]], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", RowBox[List[FractionBox[RowBox[List[SubscriptBox["b", "q"], "+", "k", "+", "n", "-", "1"]], "n"], ";", RowBox[List[SuperscriptBox["n", RowBox[List["n", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], SuperscriptBox["z", "n"]]]]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, True]], HypergeometricPFQ] /; η j = 1 q b j + q - 1 2 [/itex]

 Rule Form

 Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["n", "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["n", "-", "1"]]], RowBox[List[SuperscriptBox["n", RowBox[List[RowBox[List["-", "\[Eta]"]], "-", RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], " ", "k"]]]]], " ", SuperscriptBox["z", "k"], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List["Pochhammer", "[", RowBox[List[SubscriptBox["a", "j"], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List[SubscriptBox["aa", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["aa", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["aa", "p"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["aa", "p"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["k", "+", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List["k", "+", "n"]], "n"], ",", FractionBox[RowBox[List[SubscriptBox["bb", "1"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["bb", "1"], "+", "k", "+", "n", "-", "1"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["bb", "q"], "+", "k"]], "n"], ",", "\[Ellipsis]", ",", FractionBox[RowBox[List[SubscriptBox["bb", "q"], "+", "k", "+", "n", "-", "1"]], "n"]]], "}"]], ",", RowBox[List[SuperscriptBox["n", RowBox[List["n", " ", RowBox[List["(", RowBox[List["p", "-", "q", "-", "1"]], ")"]]]]], " ", SuperscriptBox["z", "n"]]]]], "]"]]]]]]]], "/;", RowBox[List["\[Eta]", "\[Equal]", RowBox[List[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "q"], SubscriptBox["b", "j"]]], "+", FractionBox[RowBox[List["q", "-", "1"]], "2"]]]]]]]]]]]

 Date Added to functions.wolfram.com (modification date)

 2001-10-29