Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
HypergeometricPFQRegularized






Mathematica Notation

Traditional Notation









Hypergeometric Functions > HypergeometricPFQRegularized[{a1,...,ap},{b1,...,bq},z] > Differentiation > Low-order differentiation > With respect to a1





http://functions.wolfram.com/07.32.20.0002.01









  


  










Input Form





Derivative[{1, 0, \[Ellipsis], 0}, {0, \[Ellipsis], 0}, 0][ HypergeometricPFQRegularized][{Subscript[a, 1], \[Ellipsis], Subscript[a, p]}, {Subscript[b, 1], \[Ellipsis], Subscript[b, q]}, z] == z Gamma[Subscript[a, 1]] Product[Subscript[a, j] HypergeometricPFQRegularized[{{1 + Subscript[a, 1], \[Ellipsis], 1 + Subscript[a, p]}, {1}, {1, Subscript[a, 1]}}, {{2, 1 + Subscript[b, 1], \[Ellipsis], 1 + Subscript[b, q]}, {}, {1 + Subscript[a, 1]}}, z, z], {j, 1, p}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List["Derivative", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "0", ",", "\[Ellipsis]", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "\[Ellipsis]", ",", "0"]], "}"]], ",", "0"]], "]"]], "[", "HypergeometricPFQRegularized", "]"]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["a", "p"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b", "1"], ",", "\[Ellipsis]", ",", SubscriptBox["b", "q"]]], "}"]], ",", "z"]], "]"]], "\[Equal]", RowBox[List["z", " ", RowBox[List["Gamma", "[", SubscriptBox["a", "1"], "]"]], RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List[SubscriptBox["a", "j"], RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["a", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["a", "p"]]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", SubscriptBox["a", "1"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", SubscriptBox["b", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["b", "q"]]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["a", "1"]]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msub> <mi> p </mi> </msub> <mrow> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mtext> </mtext> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> q </mi> <mo> + </mo> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <msub> <mi> p </mi> </msub> <mrow> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mi> q </mi> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 0 </mn> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mn> 0 </mn> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> } </mo> </mrow> <mo> , </mo> <mn> 0 </mn> </mrow> <mo> ) </mo> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <msub> <mi> a </mi> <mi> p </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[SubscriptBox[&quot;a&quot;, &quot;1&quot;], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[&quot;\[Ellipsis]&quot;, HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;a&quot;, &quot;p&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mrow> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> , </mo> <mo> &#8230; </mo> </mrow> <mo> , </mo> <msub> <mi> b </mi> <mi> q </mi> </msub> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[TagBox[RowBox[List[SubscriptBox[&quot;b&quot;, &quot;1&quot;], &quot;,&quot;, &quot;\[Ellipsis]&quot;]], HypergeometricPFQ, Rule[Editable, True]], &quot;,&quot;, TagBox[SubscriptBox[&quot;b&quot;, &quot;q&quot;], HypergeometricPFQ, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQ, Rule[Editable, False]] </annotation> </semantics> <mo> ; </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HypergeometricPFQ, Rule[Editable, True]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mtext> </mtext> <mrow> <munderover> <mo> &#8719; </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> a </mi> <mi> j </mi> </msub> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msubsup> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mrow> <mi> q </mi> <mo> + </mo> <mrow> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 0 </mn> <mo> &#8290; </mo> <mn> 1 </mn> </mrow> </mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mn> 1 </mn> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mrow> <msub> <mi> a </mi> <mi> p </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <msub> <mi> b </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mo> &#8230; </mo> <mo> , </mo> <mrow> <mrow> <mrow> <msub> <mi> b </mi> <mi> q </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <msub> <mi> a </mi> <mn> 1 </mn> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SuperscriptBox["HypergeometricPFQRegularized", TagBox[RowBox[List["(", RowBox[List[RowBox[List["{", RowBox[List["1", ",", "0", ",", "\[Ellipsis]_", ",", "0"]], "}"]], ",", RowBox[List["{", RowBox[List["0", ",", "\[Ellipsis]_", ",", "0"]], "}"]], ",", "0"]], ")"]], Derivative], Rule[MultilineFunction, None]], "[", RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["a_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["a_", "p_"]]], "}"]], ",", RowBox[List["{", RowBox[List[SubscriptBox["b_", "1"], ",", "\[Ellipsis]_", ",", SubscriptBox["b_", "q_"]]], "}"]], ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List["z", " ", RowBox[List["Gamma", "[", SubscriptBox["aa", "1"], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["j", "=", "1"]], "p"], RowBox[List[SubscriptBox["a", "j"], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "+", SubscriptBox["aa", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["aa", "p"]]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", SubscriptBox["aa", "1"]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["1", "+", SubscriptBox["bb", "1"]]], ",", "\[Ellipsis]", ",", RowBox[List["1", "+", SubscriptBox["bb", "q"]]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["1", "+", SubscriptBox["aa", "1"]]], "}"]]]], "}"]], ",", "z", ",", "z"]], "]"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29