
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.09.03.0001.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
LegendreP[\[Nu], \[Mu], 3, 0] == (2^\[Mu] Sqrt[Pi])/
(I^\[Mu] (Gamma[(1 - \[Mu] - \[Nu])/2] Gamma[(2 - \[Mu] + \[Nu])/2]))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "0"]], "]"]], "\[Equal]", FractionBox[RowBox[List[SuperscriptBox["2", "\[Mu]"], SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "\[Mu]"]]], " ", SqrtBox["\[Pi]"]]], RowBox[List[RowBox[List["Gamma", "[", FractionBox[RowBox[List["1", "-", "\[Mu]", "-", "\[Nu]"]], "2"], "]"]], " ", RowBox[List["Gamma", "[", FractionBox[RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], "2"], "]"]]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mstyle scriptlevel='0'> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> </mstyle> <mo> ( </mo> <mn> 0 </mn> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mo> ⩵ </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> μ </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅈ </mi> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreQ </ci> <ci> 𝔓 </ci> </apply> <ci> ν </ci> </apply> <ci> μ </ci> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <ci> ν </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", "0"]], "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["2", "\[Mu]"], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "\[Mu]"]]], " ", SqrtBox["\[Pi]"]]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "\[Mu]", "-", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,2,z] | |
|
|
|