| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.09.03.0030.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | LegendreP[2, 0, 3, z] == (1/2) (-1 + 3 z^2) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["2", ",", "0", ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <msubsup>  <semantics>  <mi> 𝔓 </mi>  <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation>  </semantics>  <mn> 2 </mn>  <mn> 0 </mn>  </msubsup>  <mo> ( </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation>  </semantics>  <mo> ) </mo>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 3 </mn>  <mo> ⁢ </mo>  <msup>  <mi> z </mi>  <mn> 2 </mn>  </msup>  </mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <apply>  <power />  <apply>  <ci> Subscript </ci>  <apply>  <ci> LegendreP </ci>  <ci> 𝔓 </ci>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> 0 </cn>  </apply>  <apply>  <apply>  <ci> HoldComplete </ci>  <ci> LegendreP </ci>  <cn type='integer'> 2 </cn>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 3 </cn>  <apply>  <power />  <ci> z </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["2", ",", "0", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", SuperscriptBox["z", "2"]]]]], ")"]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | LegendreP[n,z] |  | LegendreP[nu,z] |  | LegendreP[nu,mu,z] |  | LegendreP[n,mu,2,z] |  | LegendreP[nu,mu,2,z] |  |  | 
 | 
 
 | 
 |