|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.09.03.0087.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[10, 5, 3, z] == (135135/8) (-1 + z)^(5/2) z (1 + z)^(5/2)
(15 - 170 z^2 + 323 z^4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["10", ",", "5", ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[FractionBox["135135", "8"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List["5", "/", "2"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["15", "-", RowBox[List["170", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["323", " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation> </semantics> <mn> 10 </mn> <mn> 5 </mn> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 135135 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 323 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 170 </mn> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mn> 15 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> 𝔓 </ci> </apply> <cn type='integer'> 10 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='rational'> 135135 <sep /> 8 </cn> <ci> z </ci> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 323 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 170 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 15 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["10", ",", "5", ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["135135", "8"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "z"]], ")"]], RowBox[List["5", "/", "2"]]], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["15", "-", RowBox[List["170", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["323", " ", SuperscriptBox["z", "4"]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,2,z] | |
|
|
|