|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.09.06.0025.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[\[Nu], -m, 3, z] == (((-1)^m Sin[Pi \[Nu]])/(2^m Pi m!))
(z + 1)^(m/2) (z - 1)^(m/2) Log[(z + 1)/2] Hypergeometric2F1[
1 + m + \[Nu], m - \[Nu], 1 + m, (z + 1)/2] +
((m - 1)!/(Gamma[m - \[Nu]] Gamma[1 + m + \[Nu]]))
((z - 1)^(m/2)/(z + 1)^(m/2))
Sum[((Pochhammer[-\[Nu], k] Pochhammer[\[Nu] + 1, k])/
(k! Pochhammer[1 - m, k])) ((z + 1)/2)^k, {k, 0, m - 1}] -
(((-1)^m Sin[Pi \[Nu]])/(2^m Pi)) (z + 1)^(m/2) (z - 1)^(m/2)
Sum[((Pochhammer[m - \[Nu], k] Pochhammer[1 + m + \[Nu], k])/
(k! (k + m)!)) (PolyGamma[k + 1] + PolyGamma[k + m + 1] -
PolyGamma[k + m - \[Nu]] - PolyGamma[k + m + \[Nu] + 1])
((z + 1)/2)^k, {k, 0, Infinity}] /; Element[m, Integers] && m > 0 &&
!Element[\[Nu], Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "m"]], ",", "3", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], RowBox[List[SuperscriptBox["2", "m"], "\[Pi]", " ", RowBox[List["m", "!"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "m", "+", "\[Nu]"]], ",", RowBox[List["m", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "m"]], ",", FractionBox[RowBox[List["z", "+", "1"]], "2"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], RowBox[List[RowBox[List["Gamma", "[", RowBox[List["m", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]]]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["m", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["m", "/", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["m", "-", "1"]]], RowBox[List[FractionBox[RowBox[List[" ", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", "k"]], "]"]]]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "m"]], ",", "k"]], "]"]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], RowBox[List[SuperscriptBox["2", "m"], "\[Pi]"]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["m", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "m", "+", "\[Nu]"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m"]], ")"]], "!"]]]]], RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m", "-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m", "+", "\[Nu]", "+", "1"]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Nu]", ",", "Integers"]], "]"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox[TagBox["\[GothicCapitalP]", LegendreP], LegendreP] </annotation> </semantics> <mi> ν </mi> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mn> 2 </mn> <mi> m </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> m </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> ν </mi> </mrow> </mrow> <mo> ; </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["m", "+", "\[Nu]", "+", "1"]], Hypergeometric2F1, Rule[Editable, True]], ",", TagBox[RowBox[List["m", "-", "\[Nu]"]], Hypergeometric2F1, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["m", "+", "1"]], Hypergeometric2F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1, Rule[Editable, False]], ";", TagBox[FractionBox[RowBox[List["z", "+", "1"]], "2"], Hypergeometric2F1, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mrow> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["1", "-", "m"]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mn> 2 </mn> <mi> m </mi> </msup> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["m", "-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["m", "+", "\[Nu]", "+", "1"]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> m </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> ν </mi> <mo> ∉ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <apply> <ci> LegendreP </ci> <ci> 𝔓 </ci> </apply> </apply> <ci> ν </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <sin /> <apply> <times /> <ci> ν </ci> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <pi /> <apply> <factorial /> <ci> m </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> m </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> m </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <ci> k </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <sin /> <apply> <times /> <ci> ν </ci> <pi /> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> m </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> k </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <notin /> <ci> ν </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", RowBox[List["-", "m_"]], ",", "3", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", RowBox[List["Log", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "m", "+", "\[Nu]"]], ",", RowBox[List["m", "-", "\[Nu]"]], ",", RowBox[List["1", "+", "m"]], ",", FractionBox[RowBox[List["z", "+", "1"]], "2"]]], "]"]]]], RowBox[List[SuperscriptBox["2", "m"], " ", "\[Pi]", " ", RowBox[List["m", "!"]]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["m", "-", "1"]]], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["\[Nu]", "+", "1"]], ",", "k"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "m"]], ",", "k"]], "]"]]]]]]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["m", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["m", "/", "2"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["m", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["m", "-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "m", "+", "\[Nu]"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "1"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m", "+", "1"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m", "-", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["k", "+", "m", "+", "\[Nu]", "+", "1"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["z", "+", "1"]], "2"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["k", "+", "m"]], ")"]], "!"]]]]]]]]], RowBox[List[SuperscriptBox["2", "m"], " ", "\[Pi]"]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["!", RowBox[List["\[Nu]", "\[Element]", "Integers"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,2,z] | |
|
|
|