|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.09.17.0007.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[\[Nu], \[Mu] + 1, 3, z] + (\[Mu] (\[Mu] - 1) - \[Nu] (\[Nu] + 1))
LegendreP[\[Nu], \[Mu] - 1, 3, z] +
((2 \[Mu] z)/(Sqrt[z - 1] Sqrt[z + 1])) LegendreP[\[Nu], \[Mu], 3, z] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Mu]", "+", "1"]], ",", "3", ",", "z"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[Mu]", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "1"]], ")"]]]], "-", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["\[Mu]", "-", "1"]], ",", "3", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List["2", " ", "\[Mu]", " ", "z"]], RowBox[List[SqrtBox[RowBox[List["z", "-", "1"]]], " ", SqrtBox[RowBox[List["z", "+", "1"]]]]]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "z"]], "]"]]]]]], "\[Equal]", "0"]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation> </semantics> <mi> ν </mi> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation> </semantics> <mi> ν </mi> <mrow> <mi> μ </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mrow> <msqrt> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <plus /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> 𝔓 </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> μ </ci> <apply> <plus /> <ci> μ </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> ν </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> 𝔓 </ci> </apply> <ci> ν </ci> </apply> <apply> <plus /> <ci> μ </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> 𝔓 </ci> </apply> <ci> ν </ci> </apply> <ci> μ </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", RowBox[List["\[Mu]_", "+", "1"]], ",", "3", ",", "z_"]], "]"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[Mu]_", " ", RowBox[List["(", RowBox[List["\[Mu]_", "-", "1"]], ")"]]]], "-", RowBox[List["\[Nu]_", " ", RowBox[List["(", RowBox[List["\[Nu]_", "+", "1"]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", RowBox[List["\[Mu]_", "-", "1"]], ",", "3", ",", "z_"]], "]"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Mu]_", " ", "z_"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", "z_"]], "]"]]]], RowBox[List[SqrtBox[RowBox[List["z_", "-", "1"]]], " ", SqrtBox[RowBox[List["z_", "+", "1"]]]]]]]], "]"]], "\[RuleDelayed]", "0"]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,2,z] | |
|
|
|