| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/07.09.17.0013.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | z (1 + \[Nu] + \[Mu]) LegendreP[\[Nu], \[Mu], 3, z] + 
  Sqrt[z - 1] Sqrt[1 + z] LegendreP[\[Nu], 1 + \[Mu], 3, z] - 
  (1 + \[Nu] - \[Mu]) LegendreP[1 + \[Nu], \[Mu], 3, z] == 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]", "+", "\[Mu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", "z"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["z", "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", "z"]]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["1", "+", "\[Mu]"]], ",", "3", ",", "z"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]", "-", "\[Mu]"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "\[Mu]", ",", "3", ",", "z"]], "]"]]]]]], "\[Equal]", "0"]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mi> z </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> μ </mi>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <semantics>  <mi> P </mi>  <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation>  </semantics>  <mi> ν </mi>  <mi> μ </mi>  </msubsup>  <mo> ( </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 3]] </annotation>  </semantics>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msqrt>  <mrow>  <mi> z </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mi> z </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <semantics>  <mi> P </mi>  <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation>  </semantics>  <mi> ν </mi>  <mrow>  <mi> μ </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  </msubsup>  <mo> ( </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 3]] </annotation>  </semantics>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> μ </mi>  </mrow>  <mo> + </mo>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msubsup>  <semantics>  <mi> P </mi>  <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation>  </semantics>  <mrow>  <mi> ν </mi>  <mo> + </mo>  <mn> 1 </mn>  </mrow>  <mi> μ </mi>  </msubsup>  <mo> ( </mo>  <semantics>  <mi> z </mi>  <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 3]] </annotation>  </semantics>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mn> 0 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <plus />  <apply>  <times />  <ci> z </ci>  <apply>  <plus />  <ci> μ </ci>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> LegendreP </ci>  <ci> ν </ci>  <ci> μ </ci>  <cn type='integer'> 3 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> -1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> z </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> LegendreP </ci>  <ci> ν </ci>  <apply>  <plus />  <ci> μ </ci>  <cn type='integer'> 1 </cn>  </apply>  <cn type='integer'> 3 </cn>  <ci> z </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <apply>  <ci> LegendreP </ci>  <apply>  <plus />  <ci> ν </ci>  <cn type='integer'> 1 </cn>  </apply>  <ci> μ </ci>  <cn type='integer'> 3 </cn>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> 0 </cn>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["z_", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]_", "+", "\[Mu]_"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", "z_"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["z_", "-", "1"]]], " ", SqrtBox[RowBox[List["1", "+", "z_"]]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", RowBox[List["1", "+", "\[Mu]_"]], ",", "3", ",", "z_"]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Nu]_", "-", "\[Mu]_"]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]_"]], ",", "\[Mu]_", ",", "3", ",", "z_"]], "]"]]]]]], "]"]], "\[RuleDelayed]", "0"]]]] | 
 |  
 |   
 |  
 |  
 | |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 | | LegendreP[n,z] |  | LegendreP[nu,z] |  | LegendreP[nu,mu,z] |  | LegendreP[n,mu,2,z] |  | LegendreP[nu,mu,2,z] |  |  | 
 | 
 
 | 
 |