|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/07.09.26.0022.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(UnitStep[Abs[z] - 1] LegendreP[\[Nu], \[Mu], 3, Sqrt[z]])/
(z - 1)^(\[Mu]/2) ==
2^\[Mu] MeijerG[{{(1/2) (1 - \[Nu] - \[Mu]), 1 + (\[Nu] - \[Mu])/2}, {}},
{{}, {0, 1/2}}, z]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z", "]"]], "-", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], RowBox[List["-", FractionBox["\[Mu]", "2"]]]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "3", ",", SqrtBox["z"]]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox["2", "\[Mu]"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "\[Nu]", "-", "\[Mu]"]], ")"]]]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Mu]"]], "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", "z"]], "]"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> θ </mi> <annotation-xml encoding='MathML-Content'> <ci> UnitStep </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mi> z </mi> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mfrac> <mi> μ </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> 𝔓 </mi> <annotation encoding='Mathematica'> TagBox["\[GothicCapitalP]", LegendreP] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <msqrt> <mi> z </mi> </msqrt> <annotation encoding='Mathematica'> TagBox[SqrtBox["z"], HoldComplete[LegendreP, 3]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mn> 2 </mn> <mi> μ </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> <mrow> <mn> 0 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> <mo> - </mo> <mi> ν </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 0 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox["G", MeijerG], RowBox[List["2", ",", "2"]], RowBox[List["0", ",", "2"]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox["z", MeijerG, Rule[Editable, True]], "\[VerticalSeparator]", GridBox[List[List[RowBox[List[TagBox[FractionBox[RowBox[List["1", "-", "\[Mu]", "-", "\[Nu]"]], "2"], MeijerG, Rule[Editable, True]], ",", TagBox[RowBox[List[FractionBox[RowBox[List["\[Nu]", "-", "\[Mu]"]], "2"], "+", "1"]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox["0", MeijerG, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], MeijerG, Rule[Editable, True]]]]]]]]], ")"]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <ci> UnitStep </ci> <apply> <plus /> <apply> <abs /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <apply> <ci> LegendreP </ci> <ci> 𝔓 </ci> </apply> <ci> ν </ci> </apply> <ci> μ </ci> </apply> <apply> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </list> <list /> </list> <list> <list /> <list> <cn type='integer'> 0 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </list> </list> <ci> z </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["UnitStep", "[", RowBox[List[RowBox[List["Abs", "[", "z_", "]"]], "-", "1"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z_", "-", "1"]], ")"]], RowBox[List["-", FractionBox["\[Mu]_", "2"]]]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "3", ",", SqrtBox["z_"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[SuperscriptBox["2", "\[Mu]"], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "-", "\[Nu]", "-", "\[Mu]"]], ")"]]]], ",", RowBox[List["1", "+", FractionBox[RowBox[List["\[Nu]", "-", "\[Mu]"]], "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["0", ",", FractionBox["1", "2"]]], "}"]]]], "}"]], ",", "z"]], "]"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LegendreP[n,z] | LegendreP[nu,z] | LegendreP[nu,mu,z] | LegendreP[n,mu,2,z] | LegendreP[nu,mu,2,z] | |
|
|
|