Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,2,z] > Series representations > Generalized power series > Expansions at z==1





http://functions.wolfram.com/07.11.06.0012.01









  


  










Input Form





LegendreQ[\[Nu], m, 2, z] \[Proportional] (((-1)^m 2^(-1 - m/2))/(m! Gamma[1 - m + \[Nu]])) (1 - z)^(m/2) ((2^m (m - 1)! m! Gamma[1 - m + \[Nu]])/(1 - z)^m - EulerGamma Gamma[1 + m + \[Nu]] + Gamma[1 + m + \[Nu]] (Log[2] - Log[1 - z] + PolyGamma[1 + m] - PolyGamma[1 - m + \[Nu]] - PolyGamma[1 + m + \[Nu]])) (1 + O[z - 1]) /; Abs[(1 - z)/2] < 1 && Element[m, Integers] && m > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "m", ",", "2", ",", "z"]], "]"]], "\[Proportional]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox[RowBox[List[" ", "m"]], "2"]]]]]], RowBox[List[RowBox[List["m", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "m", "+", "\[Nu]"]], "]"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["m", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", "m"], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], " ", RowBox[List["m", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "m", "+", "\[Nu]"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "m"]]]]], "-", " ", RowBox[List["EulerGamma", " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]]]], "+", " ", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "m"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "m", "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]]]], ")"]]]]]], ")"]], RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> m </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#8733; </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mn> 2 </mn> <mi> m </mi> </msup> <mo> &#8290; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#8509; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubledGamma]&quot;, Function[EulerGamma]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mn> 2 </mn> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> &#968; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[Psi]&quot;, PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> m </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mrow> <mi> O </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> m </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> m </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> m </ci> </apply> <apply> <factorial /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <factorial /> <ci> m </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <eulergamma /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> m </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> m </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <ln /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> m </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> &#957; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> m </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <ci> O </ci> <apply> <plus /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "m_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", FractionBox["m", "2"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["m", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["2", "m"], " ", RowBox[List[RowBox[List["(", RowBox[List["m", "-", "1"]], ")"]], "!"]], " ", RowBox[List["m", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "m", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "m"]]]]], "-", RowBox[List["EulerGamma", " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", "2", "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "m"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "m", "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "m", "+", "\[Nu]"]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["O", "[", RowBox[List["z", "-", "1"]], "]"]]]], ")"]]]], RowBox[List[RowBox[List["m", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "m", "+", "\[Nu]"]], "]"]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29