Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











variants of this functions
LegendreQ






Mathematica Notation

Traditional Notation









Hypergeometric Functions > LegendreQ[nu,mu,2,z] > Series representations > Generalized power series > Expansions at z==-1





http://functions.wolfram.com/07.11.06.0018.01









  


  










Input Form





LegendreQ[\[Nu], \[Mu], 2, z] == (-(1/(2 Pi))) ((1 - z)^(\[Mu]/2)/(1 + z)^(\[Mu]/2)) (Pi Cos[Pi \[Nu]] Gamma[\[Mu]] (1 - ((\[Nu] (1 + \[Nu]))/(2 (1 - \[Mu]))) (z + 1) - (((1 - \[Nu]) \[Nu] (1 + \[Nu]) (2 + \[Nu]))/ (8 (1 - \[Mu]) (2 - \[Mu]))) (z + 1)^2 + \[Ellipsis]) + (Sin[Pi (\[Mu] - \[Nu])] Cos[Pi (\[Mu] + \[Nu])] Gamma[-\[Mu]] Gamma[\[Mu] - \[Nu]] Gamma[1 + \[Mu] + \[Nu]] (1 + z)^\[Mu] (1 - ((\[Nu] (1 + \[Nu]))/(2 (1 + \[Mu]))) (z + 1) - (((1 - \[Nu]) \[Nu] (1 + \[Nu]) (2 + \[Nu]))/(8 (1 + \[Mu]) (2 + \[Mu]))) (z + 1)^2 + \[Ellipsis]))/(1 - z)^\[Mu]) /; Abs[(z + 1)/2] < 1 && !Element[\[Mu], Integers]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", "\[Pi]"]]]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Mu]", "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "\[Mu]"]], ")"]]]]], RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "-", "\[Mu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]"]], ")"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]], "+", " ", RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]]]], "]"]], RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]], RowBox[List["Gamma", "[", RowBox[List["-", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Mu]", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "\[Mu]"]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[FractionBox[RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]"]], ")"]]]]], RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]"]], ")"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox[&quot;Q&quot;, LegendreQ] </annotation> </semantics> <mi> &#957; </mi> <mi> &#956; </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox[&quot;z&quot;, HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> &#956; </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> &#8290; </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mtext> </mtext> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#956; </mi> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mtext> </mtext> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#956; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#956; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> &#956; </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#957; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> &#957; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> &#956; </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mo> &#8230; </mo> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[LeftBracketingBar]&quot; </annotation> </semantics> <mfrac> <mrow> <mi> z </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> &#10072; </mo> <annotation encoding='Mathematica'> &quot;\[RightBracketingBar]&quot; </annotation> </semantics> </mrow> <mo> &lt; </mo> <mn> 1 </mn> </mrow> <mo> &#8743; </mo> <mrow> <mi> &#956; </mi> <mo> &#8713; </mo> <semantics> <mi> &#8484; </mi> <annotation encoding='Mathematica'> TagBox[&quot;\[DoubleStruckCapitalZ]&quot;, Function[Integers]] </annotation> </semantics> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> LegendreQ </ci> <ci> &#957; </ci> <ci> &#956; </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> &#956; </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <sin /> <apply> <times /> <pi /> <apply> <plus /> <ci> &#956; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> </apply> </apply> <apply> <cos /> <apply> <times /> <pi /> <apply> <plus /> <ci> &#956; </ci> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <ci> &#956; </ci> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#956; </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#956; </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> <apply> <times /> <pi /> <apply> <cos /> <apply> <times /> <pi /> <ci> &#957; </ci> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#956; </ci> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <ci> &#957; </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> &#957; </ci> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <ci> &#957; </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#956; </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <ci> &#8230; </ci> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <ci> &#956; </ci> <integers /> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", "\[Mu]", "]"]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "-", "\[Mu]"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "-", "\[Mu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "-", "\[Mu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]], "+", RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List["\[Mu]", "+", "\[Nu]"]], ")"]]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["-", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Mu]", "-", "\[Nu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", RowBox[List["(", RowBox[List["1", "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Nu]"]], ")"]], " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Nu]"]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["z", "+", "1"]], ")"]], "2"]]], RowBox[List["8", " ", RowBox[List["(", RowBox[List["1", "+", "\[Mu]"]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", "\[Mu]"]], ")"]]]]], "+", "\[Ellipsis]"]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["2", " ", "\[Pi]"]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["z", "+", "1"]], "2"], "]"]], "<", "1"]], "&&", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29