
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.11.20.0007.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
D[LegendreQ[\[Nu], \[Mu], 2, z], \[Mu]] ==
((Pi Csc[\[Mu] Pi] Gamma[1 + \[Mu] + \[Nu]])/(4 Gamma[1 - \[Mu] + \[Nu]]))
(Log[1 + z] - Log[1 - z] + 2 (Pi Cot[\[Mu] Pi] + PolyGamma[1 + \[Mu]] -
PolyGamma[1 - \[Mu] + \[Nu]] - PolyGamma[1 + \[Mu] + \[Nu]]))
LegendreP[\[Nu], -\[Mu], 2, z] +
(Pi/4) (Cot[\[Mu] Pi] (Log[1 + z] - Log[1 - z] + 2 PolyGamma[1 - \[Mu]]) -
2 Pi Csc[\[Mu] Pi]^2) LegendreP[\[Nu], \[Mu], 2, z] +
((Pi \[Nu] (1 + \[Nu]) (z - 1))/4)
((Cot[\[Mu] Pi]/((1 - \[Mu]) Gamma[2 - \[Mu]])) ((1 + z)^(\[Mu]/2)/
(1 - z)^(\[Mu]/2)) HypergeometricPFQ[{{1 - \[Nu], 2 + \[Nu]}, {1},
{1, 1 - \[Mu]}}, {{2, 2 - \[Mu]}, {}, {2 - \[Mu]}}, (1 - z)/2,
(1 - z)/2] + ((Csc[\[Mu] Pi] Gamma[1 + \[Mu] + \[Nu]])/
((1 + \[Mu]) Gamma[2 + \[Mu]] Gamma[1 - \[Mu] + \[Nu]]))
((1 - z)^(\[Mu]/2)/(1 + z)^(\[Mu]/2)) HypergeometricPFQ[
{{1 - \[Nu], 2 + \[Nu]}, {1}, {1, 1 + \[Mu]}},
{{2, 2 + \[Mu]}, {}, {2 + \[Mu]}}, (1 - z)/2, (1 - z)/2]) /;
!Element[\[Mu], Integers]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "\[Mu]"], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], RowBox[List["4", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["Cot", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]]]]]], ")"]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "2", ",", "z"]], "]"]]]], " ", "+", RowBox[List[FractionBox["\[Pi]", "4"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cot", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]"]], "]"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], "2"]]]]], ")"]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["\[Pi]", " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]], " "]]]], "4"], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox[RowBox[List[" ", RowBox[List["Cot", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Mu]"]], "]"]]]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "\[Mu]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["2", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["2", "-", "\[Mu]"]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]], " "]], RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Mu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "+", "\[Mu]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["2", "+", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["2", "+", "\[Mu]"]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]]]], ")"]]]]]]]], "/;", " ", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <mo> ∂ </mo> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox["Q", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <mi> μ </mi> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ν </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 0 </mn> <mo> ⁢ </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> ⁢ </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mi> F </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 0 </mn> <mo> ⁢ </mo> <mn> 1 </mn> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mn> 1 </mn> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> ( </mo> <mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> ν </mi> </mrow> <mo> , </mo> <mrow> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mn> 1 </mn> <mo> ; </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mrow> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 2 </mn> <mo> , </mo> <mrow> <mrow> <mrow> <mn> 2 </mn> <mo> + </mo> <mi> μ </mi> </mrow> <mo> ; </mo> </mrow> <mo> ; </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo> ⁢ </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> ⁢ </mo> <mi> π </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> μ </mi> <mo> ∉ </mo> <mi> ℤ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> FormBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ∂ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <apply> <ci> TagBox </ci> <ms> Q </ms> <ci> LegendreQ </ci> </apply> <ms> ν </ms> <ms> μ </ms> </apply> <ms> ( </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <apply> <ci> HoldComplete </ci> <ci> LegendreQ </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ∂ </ms> <ms> μ </ms> </list> </apply> </apply> <ms> ⩵ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> π </ms> <ms> ν </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> ν </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> z </ms> <ms> - </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> 4 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> cot </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> π </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> μ </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> - </ms> <ms> μ </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> / </ms> <ms> 2 </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> / </ms> <ms> 2 </ms> </list> </apply> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> F </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 0 </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 1 </ms> <ms> 2 </ms> </list> </apply> </apply> <ms> [ </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> ErrorBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> ν </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ν </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ms> ; </ms> <ms> 1 </ms> <ms> ; </ms> <ms> 1 </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> μ </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> - </ms> <ms> μ </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> - </ms> <ms> μ </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </list> </list> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> <ms> ] </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> csc </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> π </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> ν </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> μ </ms> </list> </apply> <ms> + </ms> <ms> ν </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> / </ms> <ms> 2 </ms> </list> </apply> </apply> <apply> <ci> SuperscriptBox </ci> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> / </ms> <ms> 2 </ms> </list> </apply> </apply> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <ms> F </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 0 </ms> <ms> 1 </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> 1 </ms> <ms> 2 </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> GridBox </ci> <list> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> ν </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> ν </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ms> ; </ms> <ms> 1 </ms> <ms> ; </ms> <ms> 1 </ms> </list> </apply> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </list> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> , </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> + </ms> <ms> μ </ms> </list> </apply> <ms> ; </ms> </list> </apply> <ms> ; </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> 2 </ms> </list> </apply> <ms> ; </ms> </list> </apply> </list> </apply> </list> </list> </apply> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> , </ms> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> 2 </ms> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <ms> π </ms> <ms> 4 </ms> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> cot </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> π </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> μ </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <ms> π </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> SuperscriptBox </ci> <ms> csc </ms> <ms> 2 </ms> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> π </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <apply> <ci> TagBox </ci> <ms> P </ms> <ci> LegendreP </ci> </apply> <ms> ν </ms> <ms> μ </ms> </apply> <ms> ( </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> FractionBox </ci> <apply> <ci> RowBox </ci> <list> <ms> π </ms> <apply> <ci> RowBox </ci> <list> <ms> csc </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> π </ms> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> ν </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <apply> <ci> RowBox </ci> <list> <ms> 4 </ms> <apply> <ci> RowBox </ci> <list> <ms> Γ </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> ν </ms> <ms> - </ms> <ms> μ </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </apply> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> + </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <ms> log </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> 1 </ms> <ms> - </ms> <ms> z </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <ms> 2 </ms> <apply> <ci> RowBox </ci> <list> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> RowBox </ci> <list> <ms> π </ms> <apply> <ci> RowBox </ci> <list> <ms> cot </ms> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> π </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> + </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> ν </ms> <ms> - </ms> <ms> μ </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> <ms> - </ms> <apply> <ci> RowBox </ci> <list> <apply> <ci> TagBox </ci> <ms> ψ </ms> <ci> PolyGamma </ci> </apply> <ms> ( </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> + </ms> <ms> ν </ms> <ms> + </ms> <ms> 1 </ms> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> <ms> ) </ms> </list> </apply> <apply> <ci> RowBox </ci> <list> <apply> <ci> SubsuperscriptBox </ci> <apply> <ci> TagBox </ci> <ms> P </ms> <ci> LegendreP </ci> </apply> <ms> ν </ms> <apply> <ci> RowBox </ci> <list> <ms> - </ms> <ms> μ </ms> </list> </apply> </apply> <ms> ( </ms> <apply> <ci> TagBox </ci> <ms> z </ms> <apply> <ci> HoldComplete </ci> <ci> LegendreP </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ms> ) </ms> </list> </apply> </list> </apply> </list> </apply> </list> </apply> <ms> /; </ms> <apply> <ci> RowBox </ci> <list> <ms> μ </ms> <ms> ∉ </ms> <ms> ℤ </ms> </list> </apply> </list> </apply> <ci> TraditionalForm </ci> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["\[Mu]_"]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[Pi]", " ", RowBox[List["Cot", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "2", ",", "z"]], "]"]]]], RowBox[List["4", " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]]], "+", RowBox[List[FractionBox["1", "4"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cot", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]"]], "]"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "\[Pi]", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], "2"]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[Nu]", " ", RowBox[List["(", RowBox[List["1", "+", "\[Nu]"]], ")"]], " ", RowBox[List["(", RowBox[List["z", "-", "1"]], ")"]]]], ")"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["Cot", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "-", "\[Mu]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["2", "-", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["2", "-", "\[Mu]"]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "-", "\[Mu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "-", "\[Mu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Csc", "[", RowBox[List["\[Mu]", " ", "\[Pi]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List["HypergeometricPFQ", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["1", "-", "\[Nu]"]], ",", RowBox[List["2", "+", "\[Nu]"]]]], "}"]], ",", RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List["1", ",", RowBox[List["1", "+", "\[Mu]"]]]], "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List["2", ",", RowBox[List["2", "+", "\[Mu]"]]]], "}"]], ",", RowBox[List["{", "}"]], ",", RowBox[List["{", RowBox[List["2", "+", "\[Mu]"]], "}"]]]], "}"]], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"], ",", FractionBox[RowBox[List["1", "-", "z"]], "2"]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", "\[Mu]"]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List["2", "+", "\[Mu]"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]]]], ")"]]]]]], "/;", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|