
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/07.11.20.0008.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
D[LegendreQ[\[Nu], \[Mu], 2, z], {\[Mu], 2}] ==
(Pi/2) ((Cot[Pi \[Mu]] (2 Pi^2 Csc[Pi \[Mu]]^2 +
(1/4) (Log[1 + z] - Log[1 - z])^2) - Pi Csc[Pi \[Mu]]^2
(Log[1 + z] - Log[1 - z])) LegendreP[\[Nu], \[Mu], 2, z] +
Csc[Pi \[Mu]]^2 Pochhammer[1 - \[Mu] + \[Nu], 2 \[Mu]]
(Sin[Pi \[Mu]] ((Log[1 + z] - Log[1 - z] - PolyGamma[
1 - \[Mu] + \[Nu]] - PolyGamma[1 + \[Mu] + \[Nu]])
(PolyGamma[1 - \[Mu] + \[Nu]] + PolyGamma[1 + \[Mu] + \[Nu]]) +
PolyGamma[1, 1 - \[Mu] + \[Nu]] - PolyGamma[1, 1 + \[Mu] + \[Nu]] +
Pi^2 - (1/4) (Log[1 + z] - Log[1 - z])^2) - 2 Pi^2 Csc[Pi \[Mu]] -
Pi Cos[Pi \[Mu]] (Log[1 + z] - Log[1 - z] -
2 PolyGamma[1 - \[Mu] + \[Nu]] - 2 PolyGamma[1 + \[Mu] + \[Nu]]))
LegendreP[\[Nu], -\[Mu], 2, z]) + ((Pi Csc[Pi \[Mu]]^2)/4)
((1 + z)^(\[Mu]/2)/(1 - z)^(\[Mu]/2))
Sum[((Pochhammer[-\[Nu], k] Pochhammer[1 + \[Nu], k])/
(k! Gamma[1 + k - \[Mu]])) (Sin[2 Pi \[Mu]]
(PolyGamma[1 + k - \[Mu]]^2 - PolyGamma[1, 1 + k - \[Mu]]) +
PolyGamma[1 + k - \[Mu]] ((Log[1 + z] - Log[1 - z]) Sin[2 Pi \[Mu]] -
4 Pi)) ((1 - z)/2)^k, {k, 0, Infinity}] -
((Pi Csc[Pi \[Mu]])/2) Pochhammer[1 - \[Mu] + \[Nu], 2 \[Mu]]
((1 - z)^(\[Mu]/2)/(1 + z)^(\[Mu]/2))
Sum[((Pochhammer[-\[Nu], k] Pochhammer[1 + \[Nu], k])/
(k! Gamma[1 + k + \[Mu]])) (PolyGamma[1 + k + \[Mu]]^2 +
PolyGamma[1 + k + \[Mu]] (Log[1 + z] - Log[1 - z] +
2 Pi Cot[Pi \[Mu]] - 2 PolyGamma[1 - \[Mu] + \[Nu]] -
2 PolyGamma[1 + \[Mu] + \[Nu]]) - PolyGamma[1, 1 + k + \[Mu]])
((1 - z)/2)^k, {k, 0, Infinity}] /; Abs[(1 - z)/2] < 1 &&
!Element[\[Mu], Integers] && Element[m, Integers] && m > 0
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["\[Mu]", ",", "2"]], "}"]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"]]], "+", RowBox[List[FractionBox["1", "4"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], "2"]]]]], ")"]]]], "-", RowBox[List["\[Pi]", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]]]]]], ")"]], RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]]]], "+", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]]]], "]"]], "+", SuperscriptBox["\[Pi]", "2"], "-", RowBox[List[FractionBox["1", "4"], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], "2"]]]]], ")"]]]], "-", RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]]]], ")"]]]]]], " ", ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "2", ",", "z"]], "]"]]]]]], ")"]]]], "+", " ", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"]]], "4"], FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]], " "]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "-", "\[Mu]"]], "]"]]]]], " ", RowBox[List["(", " ", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["2", " ", "\[Pi]", " ", "\[Mu]"]], "]"]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", "\[Mu]"]], "]"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "k", "-", "\[Mu]"]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "\[Pi]", " ", "\[Mu]"]], "]"]]]], "-", RowBox[List["4", " ", "\[Pi]"]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]]]]]], "-", " ", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], "2"], RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], " ", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "+", "\[Mu]"]], "]"]]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "\[Mu]"]], "]"]], "2"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "k", "+", "\[Mu]"]]]], "]"]]]], ")"]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]]]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "\[And]", RowBox[List["Not", "[", RowBox[List["Element", "[", RowBox[List["\[Mu]", ",", "Integers"]], "]"]], "]"]], "\[And]", RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mn> 2 </mn> </msup> <mrow> <msubsup> <semantics> <mi> Q </mi> <annotation encoding='Mathematica'> TagBox["Q", LegendreQ] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreQ, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> μ </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> k </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "\[Mu]", "+", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mtext> </mtext> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> μ </mi> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mi> ν </mi> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["-", "\[Nu]"]], ")"]], "k"], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "+", "1"]], ")"]], "k"], Pochhammer] </annotation> </semantics> </mrow> <mrow> <mrow> <mi> k </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mi> k </mi> </msup> </mrow> </mrow> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mtext> </mtext> <mrow> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> μ </mi> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List["\[Nu]", "-", "\[Mu]", "+", "1"]], ")"]], RowBox[List["2", " ", "\[Mu]"]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mrow> <mo> ( </mo> <mn> 1 </mn> <mo> ) </mo> </mrow> </msup> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> ν </mi> <mo> - </mo> <mi> μ </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <semantics> <mi> ψ </mi> <annotation encoding='Mathematica'> TagBox["\[Psi]", PolyGamma] </annotation> </semantics> <mo> ( </mo> <mrow> <mi> μ </mi> <mo> + </mo> <mi> ν </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> csc </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> <mrow> <mo> - </mo> <mi> μ </mi> </mrow> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mtext> </mtext> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cot </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> μ </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msubsup> <semantics> <mi> P </mi> <annotation encoding='Mathematica'> TagBox["P", LegendreP] </annotation> </semantics> <mi> ν </mi> <mi> μ </mi> </msubsup> <mo> ( </mo> <semantics> <mi> z </mi> <annotation encoding='Mathematica'> TagBox["z", HoldComplete[LegendreP, 2]] </annotation> </semantics> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> μ </mi> <mo> ∉ </mo> <mi> ℤ </mi> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> μ </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> LegendreQ </ci> <ci> ν </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <apply> <csc /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> μ </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <pi /> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <sin /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <ci> μ </ci> </apply> </apply> <apply> <plus /> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <pi /> <apply> <csc /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> <apply> <times /> <ci> μ </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> ν </ci> </apply> <ci> k </ci> </apply> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <factorial /> <ci> k </ci> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> k </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> <apply> <cot /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> k </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> k </ci> <ci> μ </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Pochhammer </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> μ </ci> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <sin /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> PolyGamma </ci> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <cos /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> PolyGamma </ci> <apply> <plus /> <ci> μ </ci> <ci> ν </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <csc /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> ν </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> μ </ci> </apply> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <cot /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <apply> <power /> <apply> <csc /> <apply> <times /> <pi /> <ci> μ </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> LegendreP </ci> <ci> ν </ci> <ci> μ </ci> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <apply> <abs /> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> z </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <notin /> <ci> μ </ci> <ci> ℤ </ci> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["\[Mu]_", ",", "2"]], "}"]]]]], RowBox[List["LegendreQ", "[", RowBox[List["\[Nu]_", ",", "\[Mu]_", ",", "2", ",", "z_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"]]], "+", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], "2"]]]]], ")"]]]], "-", RowBox[List["\[Pi]", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", "\[Mu]", ",", "2", ",", "z"]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]], ")"]]]], "+", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]]]], "]"]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]]]], "]"]], "+", SuperscriptBox["\[Pi]", "2"], "-", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], "2"]]]]], ")"]]]], "-", RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], "-", RowBox[List["\[Pi]", " ", RowBox[List["Cos", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]]]], ")"]]]]]], ")"]], " ", RowBox[List["LegendreP", "[", RowBox[List["\[Nu]", ",", RowBox[List["-", "\[Mu]"]], ",", "2", ",", "z"]], "]"]]]]]], ")"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]], "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["2", " ", "\[Pi]", " ", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", "\[Mu]"]], "]"]], "2"], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "k", "-", "\[Mu]"]]]], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "-", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["2", " ", "\[Pi]", " ", "\[Mu]"]], "]"]]]], "-", RowBox[List["4", " ", "\[Pi]"]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "-", "\[Mu]"]], "]"]]]]]]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[Pi]", " ", RowBox[List["Csc", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], ")"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], ",", RowBox[List["2", " ", "\[Mu]"]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "-", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["-", "\[Nu]"]], ",", "k"]], "]"]], " ", RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List["1", "+", "\[Nu]"]], ",", "k"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "\[Mu]"]], "]"]], "2"], "+", RowBox[List[RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "k", "+", "\[Mu]"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Log", "[", RowBox[List["1", "+", "z"]], "]"]], "-", RowBox[List["Log", "[", RowBox[List["1", "-", "z"]], "]"]], "+", RowBox[List["2", " ", "\[Pi]", " ", RowBox[List["Cot", "[", RowBox[List["\[Pi]", " ", "\[Mu]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "-", "\[Mu]", "+", "\[Nu]"]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["PolyGamma", "[", RowBox[List["1", "+", "\[Mu]", "+", "\[Nu]"]], "]"]]]]]], ")"]]]], "-", RowBox[List["PolyGamma", "[", RowBox[List["1", ",", RowBox[List["1", "+", "k", "+", "\[Mu]"]]]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["1", "-", "z"]], "2"], ")"]], "k"]]], RowBox[List[RowBox[List["k", "!"]], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "k", "+", "\[Mu]"]], "]"]]]]]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", "z"]], ")"]], RowBox[List["\[Mu]", "/", "2"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["Abs", "[", FractionBox[RowBox[List["1", "-", "z"]], "2"], "]"]], "<", "1"]], "&&", RowBox[List["!", RowBox[List["\[Mu]", "\[Element]", "Integers"]]]], "&&", RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|